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Curvatur e of space-time demands a doubling of degr ees of freedom.

Below this statement will be proven, using [1].

The gravitational field, caused by mass place-sgekd- distribution in our universe, results irveture of space-
time.

Albert Einstein solved curvature with the work adlBhard Riemann. In this work curvature can beyaeal in
linear space after doubling of degrees of freedothis description.

This fact can be imagined quite simple. For exaalee an electron described in curved space-im@M an
electron always is a point-particle. |.e. an elattis given by its position in 4D-space-time. Inmegthat the
electron moves with respect to an observer. Indhse the electron travels a so-called worldlinghén3D-
relativistic space in a time measured with a clotin observer. Imagine that at a certain timeg\ith the particle
moving) inertial frame has the z-axis parallelhe worldline with “+"-direction in the direction @hotion of the
electron. As a result of curvature of space-tirhe,worldline will never follow the straight z-a>a$ the chosen
inertial frame, but will travel a deviated curveakip. Also see figure 1. This curvature can be dasdrcompletely if
instead of the 1 dimensional z-axis a 2D-plané@sen in which the curved path of the electron mcclihe
direction of this plane in the xy-plane is of cauxariable. The direction and size of the curvatadiusp depends
on the mass- and mass-speed-distribution of theienuniverse through which this electron moves.

This is why a curved path can only be describedllinear description after doubling of 4D-spacetime

x* = (ct, X, v, 2) to a so-called Riemann-space Withamount of linear coordinates N doubled, i.e.:

x* o X", metnd{1, ..., N} Q)

In our 4D-spacetime we have N = 8.

In curved space-time the fundamental tensor, oriopgt” is not a constant.

The corresponding metric in the N-dimensioliaéar space h, remainsas a result of that a constant.

Now analyze an infinitesimal displacemerit: x x* + dx* )
The distance between these 2 points now fs=dg,dx"dx’ = h,dx"dx" (3)
Here g, is a variable metric caused by curvature.

Curvature results in a variable determinant given-b < det(g,) << 0

In most cases curvature is almost negligible, shahthe SR limit is approximately valid: et) =-1

The difference between the two points after inéisitnal displacement (2) also results in a displacgnm the linear
N-dimensional Riemann-space.

The h,, are constants, so: Ux X" dx 4)
Variation (4) in expression (3) results into? dsh,x" X", dx*dx’ = X", X, dx*dx’ (5)
From (3) and (5) we have for the fundamental terger= X', Xny (6)

An arbitrary 4-vector Aat a point x has an image in the linear Riemarmtalso given by (4):
A'(X) = X uAN(X) (7

Assume vector (7) in curved space at point x andentbis vector parallel to itself over an infinitesl distance
given by (2). As a result of curvature of spaceetithis vector (7) after parallel displacement gibgr(2) won't lie
in the real curved 4D-world. The difference is dfigher order then the displacement itself. Howgthgs parallel
displaced vector can always be projected on theecuworld-surface of the real 4D-space-time to inbdareal 4D-
vector.



I.e., built the vector from a tangential piece amtbrmal piece, and than neglect the normal piece:

A= A"+ Anor", . (8)
with:  An" = A X" (X +dX) 9)
Anor™ = Anot X" (x+dx) = 0 (10)

Multiply (8) with X,,(x+dx):

A" Xny(X+0X) = Arl" Xy (XH0X) X0, (X+0X) = Aard' Guo (X+0IX) (11)
Up to first order in dx (11) can be written as:

Atany(X+dX) = A'(Xny(X)+ Xny,0dX7) = A"y (Xny+ Xny,60X7) = Ay(X) + AYX" ) Xy o0X° (12)
Parallel displacement neglects curvature at irdgiihal level as a higher order effect. This is tiaat with
Einstein’s description implying that curvature @finitesimal level can always be analyzed SR. @eat$he

Schwarzschild radius r = 2m of black holes cunaiaralways negligible at infinitesimal scale! ickanges of 4-
vectors can be solved parallel using (12) in abkthcases:

dA, = A", Xny,odX° (13)
When summing/subtracting derivatives of the methiéndices of the N-dimensional Riemann-spaceadasorbed in
the so-called Christoffel symbcEL;w = ¥%2(Qwso - Qo + GQuow) (14)
This is not a tensor!
From (14) we see: WGho = r,m, + |_Vu0 (15)

Using the Christoffel symbol (14) and (15), onalide to express parallel displacement of a 4-vesithrout the use
of the linear N-dimensional Riemann-space:

dA, = A ,.dx® (16)

I.e., using the Christoffel symbol all referencedtte non-interpretable linear Riemann-space aneved. Only
dependency of the symmetrical metrjg gf the imaginable 4D-spacetime remains. Howewvee, may never forget
that this space-time always is curved!

As a result of this curvature the differential (1$not arbitrary dependent on the metijg dput the dependency is
given by a sum of derivatives of the metric, aegiin (14).

The even number NI N giving the degrees of freedom (coordinates) ofittear Riemann-space, always is the
amount of degrees of freedom of the described duspace doubled.

Curvature must be taken into account in any desonipf physics according to Einstein’s
C(omprehensive)A(ction)P(rinciple), also see [1qpter 30. l.e. curvature cannot be neglected inpuygical
model, even in models in which curvature is noetakto account, like all models of QM.

When we again observe the electron moving in ttsitige z-direction, as given in figure 1, we nowoknthat
curvature results in a curved traveled worldlina.&yery moment of time the position of the electimdescribed,
the curvature is different as a result of the cliagpgass distribution around the described electganthe variable
curvature with radius orthogonal to the worldline, the z-axis at that moment, takes place irRibglane given by
the worldline parallel to the z-axis and the ragius the xy-plane at that moment.

Curvature of a traveled worldline can always becdbed by two consecutive infinitesimal displacetsefirst a
displacement along the worldline (z-axis in figajefollowed by curvature in the plane given by thaxis and the
point-of-rotation in the xy-plane at distangé€fig. 1). As a result of this curvature descrilvéith 2 consecutive
infinitesimal steps in 2 orthogonal directions ivlsvious that all particles are only described #yadter doubling
the degrees of freedom. Besides the z-axis onenaksds to use the orthogonal curvature-ragivsnd this
characteristic is valid for all used x, y, z andges.



In almost all experiments curvature can be negledteall experiments with negligible curvature theed physical
models to describe these experiments neglect aussabmpletely. However a doubling of degrees eédiom to
describe curvature as demanded by the CAP is reegess will become apparent in the next paragraph!

The in figure 1 sketched doubling of degrees cédiam can be given as follows:
(0,0,0,0)- (cat, p$pd¢, -pp63¢, pdp) — (cdt, 0, 0,p5¢) 17

In the intermediate step first order approximatioasf) = cosg) = 1 and sinf) = ¢ en sinP) =6 are used.
All higher order variations are neglected in th& ktep.

So, curvature results in displacement not in thezddXis, but in a rotatiodp around a point at distanpeof the
(assumed QM point-particle) in the xy-plane orthogldo the z-axis. As a result the particle movea RPD-plane.
In (17) this is described infinitesimal using cyliical coordinates.



Figurel
Curvature of an elementary particle caused by turgaof space-time. On the observed moment théctmrgiven

by a point, is at the origin of the chosen inertiame and moves in the direction of the positiaxis. As a result of
curvature the particle’s worldline is curved in 8@-plane given by the z-axis and the curvaturéussol

The point of rotation is in the xy-plane orthogotwthe z-axis. The length pfand its directior® in the xy-plane
are determined by surrounding mass- and mass-spseibution at the time the observed particletitha origin of
the chosen inertial frame. All changes are passdualydhe speed of light, i.e. described by intecast of the masses
with gravitons.
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The degrees of freedom of the Riemann-Christoffel tensor or Curvature-tensor.

Curvature enforces all valid equations of motiot&we so-called covariant derivatives, given withiristead of the
standard linear derivative given with “,”:

Au:v = Au,v - |—0va0 (18)

With the Christoffel symbdI°,, given in (14).

Only when using covariant derivatives the transfation of a derivative is invariant under changeisgd
coordinate system. This is why all used derivativesst be covariant derivatives.

The covariant derivative (18) can also be seentaasor with two indices.

A contra-variant vector with a covariant derivathas an additional minus sign:

AY, = Au,v + rpro (19)

Tensors too, are only invariant under change ofdinates when used with covariant derivatives.

In these cases all covariant indices have an additi term following the ordinary derivative “,” and abntra-
variant indices an additionall+term following the ordinary derivative.

Forexample: TP = Toyu =[P Toly + [P Te% = [0 Tols (20)

From (20) it follows that the covariant derivatiofa scalar equals the ordinary derivative “,”.
The fundamental tensop,gappears to be a constant tensor under covaritetetitiation, also see (15):

Ouwv:o = Qo - I_uuogav - I_uvogpa =0Owo - |—vu0 - |—uv0 =0 (21)

Using a model with flat-space (QM) all equatiomudtion still need to be given using covariant datiles, to end
up with invariant equations independent of the chaif used coordinates.

Covariant derivatives differ from ordinary lineagrivatives by the fact that the order of covaridetivatives
determines the endresult. For example, take twegaddent covariant derivatives of a 4-vector hhpter 11):

Au:v:o = Ap:v,c - raucAa:v - ravoAp:uz (Au,v - rauvAu),o' rupc(Au,v - rBavAB) - |—O(vcr('o\p,o[ - rBuuAB) =
= '%,V,O' - ravau,o - rupo [*AV ruchu,u' AB(rBW,G - rauvrﬁuv' rquBuu) (22)

Tensor (22) and subtracted the same expressiomf#2y —~ o exchanged results in the so-called Riemann-
Christoffel tensor RM,, multiplied by a 4-vector:

Au:v:o - Au:c:v = ABRBuvoa with: RGpvc = |—Bu0,v - |—pr,0 - rauJBuv' rapvrﬁuo (23)

The Riemann-Christoffel tensorBlBo, or curvature tensor, is a tensor because thedfH{&3) is a tensor. According
to the quotient theorem the curvature dependerreszmn FQM, multiplied by vector palso is a tensor.

The curvature tensor follows from analysis of 2g@mutive covariant derivatives. From these charatitss it's
straightforward that curvature implies that covatiderivatives don’'t commute (can’t be exchanged).

The curvature tensor (23) complies with the follogvBianchi symmetry relations (24) en (25):

Ruqu =- R)uo(B = R{prv = Rvp[}a (24)
Bianchi analyzed 2 covariant derivatives of a tensbis results in ([1], chapter 13):

Ruqu:e + vaBs:u + vasa:B =0 (25)
As a result of these symmetry relations the cureatensor only has 20 degrees of freedom of tta @mhount of 4

= 256 degrees of freedom. This analysis is perfdrimeurved 4D-spacetime throughout, but this cesicin also
follows from a linear analysis as sketched in feglirand analyzed with formula (17).



Einstein’s equations of motion of the gravitatiegld follow from a non-zero contraction of the cature-tensor
(contraction of one of the first 2 and one of temaining 2 indices), as for example:

R = RGWB (26)
This is the so-called symmetrical Ricci-tensor wlithdegrees of freedom.
Bianchi relation (25) twice contracted results in:

(R — ¢ R),q = 0 = RY — 14¢"R = constant (27)

The constant follows from all possible causes efdhavitation field in our 4D-universe. The spin2yjtation field
is generated by mass, given by all observed spanifctes, i.e. all charged and uncharged elemeteptpns and all
charged and uncharged combined baryons. All chgrgditles also always have mass, i.e. this resultdi charged
particles to be responsible for the gravitatiomatiftoo. The EM-field, caused by charged particieslescribed by
the so-called spinl photon. The EM-field has aitsythmetrical stress-energy tensqg Bnd this field together
with the sources (charges) is given quite easith thie 6 degrees of freedom of the spinlxspin¥esstation. The
Maxwell equations don't specify the EM-field comiglly. A so-called gauge-symmetry has to be enfotoespecify
the EM-field completely. Only anti-symmetrical axts allow gauge symmetry. In a 4D-spacetime unévére
complete gauge-symmetry is given exactly in thd-ebwn Q(uantum)F(ield)T(heories). This total gaug
symmetry just is the U(1)xSU(2)xSU(3) gauge-symmelhe U(1)xSU(2) gauge-symmetry gives mixed wité t
so-called Weinberg-angle the massless photon andrtbharged massive Z-boson and the chargeep¥iticles.

All these gauge-bosons are elementary spinl pestidlhe SU(3) gauge-symmetry describes all massige
charged quarks, which only occur combined as sp@rkaions (baryons) and bosons (gluons en mesotits)more
possible positive integer spin values.

Einstein came with a constant caused by mass, ehtrg) EM-field and a cosmological constant contitn given
by:
Ruw — ¥2guR + 8(pvvy+Ey) +Agw=0 (28)

Here R, is the Ricci tensor, R the curvature-scalaifie spin0 cosmological constant.

The (Ry — ¥2quR) spin2 gravitational field is present as a restilhass-densitp > 0 with speed,.

E. is de anti-symmetrical stress-energy tensor oEkefield caused by electric charge and chargegpee
distribution.

In this description mass and charge are describied) @ensities. Besides the strong and weak nufdesas aren’t
taken into account in equation (28). l.e. (28) ddtasse QM.

Einstein’s equations of motion of the gravitatiofield are: R, =0 (29)
The Ricci tensor is symmetrical, i.e. has 10 degfdreedom just like the metric.

Curvature analyzed in 4D-spacetime has as mostagemgression of all needed degrees of freedomviile
known Riemann-Christoffel tensor (23). As a resiiithe Bianchi symmetries this tensor has 20 = 2d@rees of
freedom.

Conclusion: Curvature requires doubling of degrees of freedothé used description. According to the CAP
curvature must be taken into account in any desoripf physics. So, also in any description of QMuppose
Albert Einstein already assumed this when he reethtkat the uncertainty relations of QM should kglaned
using so-called hidden variables. To me, Einsteds vight.

In QM elementary particles are described as pantigles, as sketched in figure 1.

The only way to include curvature of space-timaiiy arbitrary description is the assumption thatentary
particles aren’t point-particles, but extended ipkas in the 2D-plane orthogonal to the observedation of motion.
I.e. an elementary particle moving in the z-direetmust be described as an harmonic oscillatingtgarticle in
the xy-plane with an average extendedness in thiepequal to the so-called Planck length.
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