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The Uncertainty Principle or Heisenberg's Uncertainty Principle:

σx · σp ≥  ½  · ħ,

with: σx the Standard Deviation of position x and σp the Standard Deviation of momentum p. 

Mathematically, in wave mechanics, the uncertainty relation between position and momentum 
arises because the expressions of the wave-function in the two corresponding orthonormal bases in 
Hilbert space are Fourier transforms of one another (i.e., position and momentum are conjugate 
variables). A non-zero function and its Fourier transform cannot both be sharply localized. A similar
trade off between the variances of Fourier conjugates arises in all systems underlain by Fourier 
analysis, for example in sound waves: A pure tone is a sharp spike at a single frequency, while its 
Fourier transform gives the shape of the sound wave in the time domain, which is a completely 
delocalized sine wave. In quantum mechanics, the two key points are that the position of the particle
takes the form of a matter wave, and momentum is its Fourier conjugate, assured by the de Broglie 
relation p = ħ·k, where k is the wavenumber.

In this analysis the direction of both the position x and the momentum p are assumed to be in the 
same Direction-of-Motion, so if p = px , the position is specified in the x-axis by x. And in linear 
analyses one always assumes the analyzed variables to be in the same direction.

When describing Elementary Particles CAP-compliant as Ideal Harmonic Oscillators in the 2D-
plane Orthogonal to the Direction-of-Motion, it's at-once clear that the 3D-wavenumber vector k 
must be related to the harmonic oscillation in the 2D-plane orthogonal to the position z on the linear
analyzed z-axis. Where it should be notified that the wave-vector k = (kρ, kθ, kz) in polar-
coordinates. Harmonic Oscillation in the 2D-plane orthogonal to the described Direction-of-
Movement also results into Harmonic Oscillation in the z-axis itself.

Using a straight forward Fourier-analysis:
     ∞                                                             ∞

Ψ(x) = 1/√(2π)∫Φ(k) eikx dk                 Φ(k) = 1/√(2π)∫Ψ(x)e-ikx dx
   -∞                                                            -∞

Where it should be noted that momentum p = px =  ħ·kx is directed in the same direction as 
measured coordinate x.

When describing Elementary Particles CAP-compliant as Ideal Harmonic Oscillating Waves in the 
2D-plane Orthogonal to the Direction-of-Motion, they of-course also oscillate harmonically in the 
Direction-of-Motion itself. Even though this is actually a secondary effect. In this way it becomes 
logical why also massless Elementary Particles (spin1 Photon & spin2 invisible Graviton) posses a 
non-zero wave-number k, even though they travel with the Speed-of-Light. Here, one should 
remember that the only allowed polarization's of a Photon are in the 2D-plane orthogonal to the 
Direction-of-Motion. 
This is the Transverse Part: Ei

T = −∂0 (δij − ∂i∂j/∇2)Aj . The Longitudinal Part build out of the time-
like contribution and the space-like contribution in the Direction-of-Motion of the Photon Ei

L = 
∂i(A0 − (∂i∂j/∇2)Aj). This Longitudinal Part is described in the so-called Coulomb-gauge:

 ∇ · A = 0 with: A(xμ)=A0ei(k·x-ωt) so: k · A = 0,

the EM-Field is perpendicular to the Direction-of-Motion of the wave described by wave-vector k.
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Remember that the Photon Represents the EM-Field Completely Non-Reducible with Easy 
Imaginable 4D-Spacetime-like mathematical tools in compliance to the CAP in the only possible 
4D-Spacetime analyses.

The coordinates {Position, Momentum} have dimensions {[m], [kg m/s]}, so the Position is 
analyzed Static and the Momentum is analyzed Dynamic with respect to changing position of the 
analyzed particle in time. As a result it's evident that these 2 variables observed at the same 
analyzed Mathematical-Point can never be measured both exactly, but must comply to an 
Uncertainty Relation.

First assume that the analyzed Elementary Particle moves with a constant speed in the positive z-
axis. Choose an inertial-frame with origin at the average position of the Ideal Harmonic Oscillating 
Point in the 2D-plane orthogonal to the Direction-of-Motion. In this frame we now have:

z= z' = ∂z/∂τ = 0,

with τ the proper-time, i.e. the time measured from the origin of the chosen inertial-frame.

Symmetry around the axis of rotation makes polar-coordinates xμ = (cτ, ρ, θ, z) the most logical 
choice.
The position is now given by the position along the positive z-axis and for the Inertial Frame 
moving with the particle we now have to solve (cτ, ρ, θ), i.e.  {ρ(τ), θ(τ)}

From Elementary Particles we now have:

2<> = max + min = 1½max = 3min = s · Phi · lħ,

with Phi = ½(√5+1) the Golden Ratio, s  {½, 1½} in the cases of Elementary Fermions or
s  {1, 2} in the cases of Elementary Bosons.

And with lħ = √(ħG/c3) the Planck-Length.

N N
We have: σp

2 =    ∑ Pi (pi-μ)2, with: μ =  ∑ Pi  pi, with momentum pi having probability Pi.
i=1 i=1

This can of-course also be expressed with infinitesimal analyzed integrals.

Here μ is the average size of N times measured momentum p.

The position z and the momentum pz are conjugate variables, i.e. Fourier transform duals of one 
another. Consequently these two variables both posses the constant-product dependency ħ with 
respectively the Planck-Length = √(ħG/c3) multiplied by the so-called Planck-Momentum pħ = 
√(ħc3/G). In any case the Ideal Harmonic Oscillation will as a result of this be proportional to the 
Planck-Constant ħ itself. And this exactly explains why the most-secure Uncertainty Relations must 
be proportional to the Dirac-Constant, or Planck-Constant divided by (2π) in which the Spin of 
Elementary Particles is always given. The factor ½ in front of the Dirac-Constant is a Statistical 
factor related to the Kennard Inequality relation or Schrȍdinger Uncertainty relation. 
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