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Preface

This lecture note is based on Professor Richard Hamilton’s lectures given at
Columbia University when I was a Ritt Assistant Professor during 2002-2006. It
is also based on my understanding to geometric evolution equations.

The goal for this lecture note is to keep writing of Professor Hamilton’s lecture
notes, especially for those parts which hadn’t appeared elsewhere before. 1 apol-
ogize for not listing out all the references. The reader should check those recent
papers/books for detailed reference.

And at last, this note is far from complete and is always under updating.
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Chapter 1

Background on Ricci Flows

The structure of this chapter is organized as follows. In Section 1, we introduced
un-normalized and normalized Ricci flow equations. Short-time existence was proved
in Section 2. Some evolution equations for curvatures was derived in Section 3. In

Section 4, a property of long time existence was discussed.

1 Ricci Flow Equation

Let (M, g) be a compact Riemannian manifold. We try to improve a Riemannian
metric g(X,Y') by evolving it by its Ricci curvature Re(X,Y). A family of Riemannian
metric g(t), t € [0,7), where T' € (0, 0], is called a solution to the Ricci flow if

%g(az,t) = —2Rc(x,t) (1.1)

at all points x € M and time t € [0,¢). In other words, for any tangent vectors X

and Y at z we have:

% (X,Y)(z,t) = —2Rc(X,Y)(x,1) (1.2)
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for all points © € M and time t € [0,¢). This is a second-order weakly parabolic

system. We usually write the equation in the component form

0

Since the Ricci flow equation does not preserve the volume, we often consider the

normalized Ricci flow defined by

2

where
B f RdAV
- Jav

r

is the average scalar curvature.

2 Short Time Existence and Modified Ricci Flow

Since the Ricci flow equation is only weakly parabolic, so the first question is that of
short-time existence. In [2], Hamilton proved that on a compact manifold, a solution
exists for short time for any smooth initial metric, which made the study of Ricci flow

possible. The proof was simplified by D. DeTurck|[1] later.

Proposition 1 (Hamilton) Given any smooth, compact Riemannian manifold (M, go),
there exists a unique solution g(t) to the Ricci flow with initial condition g(0) = go

on some time interval [0, €).

DeTurck’s idea is to modify the Ricci flow by a diffeomorphism induced by a time-

dependent vector field V. First we have the following lemma:
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Lemma 1 Let v(y,t) (y € M, t € R") be a time-varying vector field on M. Then

for small t, there exists a unique family of diffeomorphisms ¢, : M — M such that

2 lz) = vli(z). 1) 2.1)

for all x € M and with @y = identity

The standard proof when v does not depend on t still applies, via the existence and
uniqueness theorem for ordinary differential equations.
For any tensor T, the time differential of T under the diffeomorphism is equal to

L, T, for the metric tensor g, we have

(Lvg)ij = giijUk + gjkDiUk

k

for a vector field v = v a_ik'

Counsider the modified flow

0

5% = —2R;; + giDjv" + gjrDiv*

we want to choose v* such that the equation is strictly parabolic.

2.1 Symbol

We can view symbol $({) as a quadratic function on cotangent space ¢ = ¥;dx’. For

0 0% ou

- =a¥ - - bl—
8tu “ oxt0xd + oxt +

C

the symbol X(¢) = a“(;(; We say that the partial differential equation is strictly

parabolic if the symbol ¥(¢) is positive definite, i.e., the matrix (a;;) is positive
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definite.

In the case of constant coefficient case, under the space Fourier transformation for
u(¢), we have
0 .

au(f) = —a"¢;¢a(C) + V—=1b;Ga(¢) + ca(C)

When the symbol is positive definite, the high frequences decays rapidly when (

become large.

2.2  Quasi-linear

If the symbol of the partial differential equation

ou . 0%u ou

9 3
T = ai Bt Wi el
u=a"(z,t,u, 835’“)8371'(9:16]' + b(x,t, u, axk)

ot

is positive for all ¢ # 0, we say the partial differential equation is quasi-linear. The
following theorem says that if the symbol is positive for initial data u(0) then the

quasi-linear partial differential equation has a short time solution.

2.3 Quasi-linear System

The Ricci flow equation is quasi-linear, the coefficient of ;wiga’;lj is linear while the

coeflicient of % is quadratic. So now let’s compute the symbol of R = gleijkl =

gﬂgkprﬂ in the following, we will omit the lower order by using --- and only write

those leading terms.

, 9, 9, ; 0
p——1 Tk _ T Tky = gt
le’ g gkp{axz gl 836{7 at } g gkp{al'l

1 L.
[ﬁgpq(glq7j+gjq,l_gjl,q)]_Sym(Z,j)+' -}
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We can simplify this to

1 . o
§g]l{[gjk:,il — Giiik) — sym(i, j) + ...}

So we have

Egik = ¢’ (Gikjt — Gikit — Gitjk + Gjrik) + - -

De Turk’s trick is to add L,g to the right hand side and make the modified flow

equation a strictly parabolic one.

Lemma 2 Let g;;(y,t) (y € M, t € R") be a time-varying Riemannian metric on

M, and p; the family of diffeomorphisms from above. Then

9 61 ()(w) = Lo aled))] + 261 (o) 22)

where w is the one-form w; = gipv".

The proof is by direct computation. So (1.3) has a solution. This solution is also

unique(see [2] or [4]).

3 Evolution of Curvature

When the Riemannian metric evolves, so does its curvature. Under the un-normalized

Ricci flow, Hamilton[2] has proved that the curvatures evolve as follows:

Proposition 2 Under un-normalized Ricci flow equation, the curvature tensor R;ju(t),

the Ricci curvature tensor R;;(t) and the scalar curvature R(t) satisfy the following
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evolution equations

%Rz‘jm =ARiji + 2(Bijii — Bijik — Bujk + Bikji)
— ¢P(RpjuRyi + RipriRy; + RijpiRor + RijepRyl) (3.1)
%Rik =AR;, + 29p“gqupiquab — 20" R, Ry (3.2)
%R =AR+ 2¢7g" Ry R, (3.3)

The proof is by direct calculation (see [2]). Since the term ¢ g* R Rj is just the
squared norm of the Ricci curvature, which is always positive, now by using the

maximal principle, we have:

Corollary 1 If the scalar curvature R > C' > 0 at time t = 0, then it remains so

under the Ricci flow.

This is an example of the Ricci flow ” prefers” positive curvature. A very important
question in the study of Ricci flow is: Which properties of curvature may be preserved
by Ricci flow equation?

A consequence result of the above is that the un-normalized Ricci flow (1.2) has
to end in finite time if the compact manifold has positive scalar curvature everywhere

at the initial time.

Corollary 2 If R(0) > ¢ > 0, then T' < n/2c, here T is the mazimum existence time

of Ricci flow Eq.(1.3).
Proof. Set
f(x,t) = nc/(n —2ct),

SO

0

E :2f2/n
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thus

0 2

a(R—f) > A(R—f)+ﬁ(R+f)(R—f)
since

R
|Rij — ggij\z >0
implies
97 g" RixRj > R*/n.
As

R—f>0

at t = 0, this property remains true under Ricci flow on [0, T"), but f(x,t) — oo when

t—n/2c,soT <n/2c. q.ed.

4 Long Time Existence

On a compact manifold of any dimension with any given initial metric at ¢t = 0, we

have

Proposition 3 (Hamilton) For any smooth initial metric on a compact manifold
there exists a mazimal time T on which there is a unique smooth solution to the Ricci

flow for 0 <t <T. FEither T = oo or else the curvature is unbounded ast — T.

Proof. We follow Hamilton’s proof in [2], the proof is by contradiction. Since we
already know short time existence and uniqueness, we can take the maximum time
interval 0 < ¢ < T on which the solution exists. We will show that if T" < oo and
|[Rm| < C as t — T, then the metric g;; converges as t — T' to a limit metric (which

is strictly positive definite), and all the derivatives converge also, showing the limit
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metric is smooth. We could then use the short time existence result to continue the
solution past T, showing T is not maximal. The following 3 lemmas are needed for

the proof:

Lemma 3 Let g;; be a time-dependent metric on M for 0 <t <T < oco. Suppose
T
/ max|g§jldt <(C<oo
t=0 M

then the metric g;j(t) for all different time are equivalent, and they converge ast — T
uniformly to a positive-definite metric tensor g;;(T) which is continuous and also

equivalent.

Lemma 4 If |[Rm| < C on 0 <t < T < o0, then for any n we can find a constant
C,, with
/ 0" Rm|*du < C,
M

Lemma 5 If |[Rm| < Cy on 0 < t < T < oo, then |0"Rm| < C,, for all n. The

constant C,, depends only on the initial value of the metric and the constant Cy.

The estimates on Rc = R;; follows from those on Rm. Since %gzj = —2Ry;,
it’s easy to see that g;;(t) have all their derivatives bounded, and converge to the
limit metric ¢;;(7T") in the C'* topology as t — T'. This completes the proof of the

Proposition 3. q.e.d.

By using the derivative estimate in [4], Hamilton gives a similar proof for this

result.



Chapter 2

Soliton and Perelman’s Estimate

The structure of this chapter is organized as follows. In Section 1, we talk about
Ricci solitons. In section 2, we begin Perelman’s estimate. In section 3, we introduce
the logarithmic sobolev inequality. In section 4, we continue to introduce Perelman’s
W-functional. In section 77, we give a quick review of injectivity radius. In section 5,
we talk about the injectivity radius estimate. In section 77, we study the no breathers

theorem. In section 77, we study the no local collapsing theorem.

1 Soliton

Soliton Equation:
0
5% = (Lv9)ij

If v = —Df, this is called gradient soliton. Under Ricci flow, we have the steady

gradient Ricci soliton equation:

Ri; = D} f

15
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Some calculation shows that
D,R+2R;;D;f =0
Hence on the gradient soliton we have
Di(R+|Df[*) = DiR +2Ry;D;f = 0
Lemma 6 On a steady gradient Ricci soliton,
R+ |Df*=M

Here M is a space constant.

More calculation shows that

0
E(Dz’Djf) = A(D;D;f) + 2Ry DiDif — RyD;D,f — Ry D; D, f

At the same time, we already have the evolution equation for Ricci curvature:

0

asz = AR;; + 2R Ry — 2R R,

Hence we have the following:
Lemma 7

0

So on a gradient Ricci soliton,

0
af =Af+C(1)



2. PERELMAN'’S ESTIMATE 1 17

And later we will see that C(t) = —M.

Perelman introduced the following equation (not only on a soliton):

0 2
i = =D =D+ R

In fact, on a gradient Ricci soliton, R = Af, so when C(t) = —M, the above two

equations are same.

2 Perelman’s Estimate 1

Perelman adjoins function f as above to go with the Ricci flow equation to form a

system.

595 = —2Ry;
Gf=-Of—|DfP+R

Suppose the Ricci flow exists for ¢ € [0, 7], then specify initial data for g;; at ¢ =0

and final data for fatt="1T.

Remark. 1) The time T here is strictly less the blow-up time we discussed before.
2) The Ricci flow equation is a forward "heat” equation, and the equation about f is
a backward heat equation.

3) fmaz decreases backward.

Lemma 8

d
— fav =
dlt/6 0

W = /(|Df|2 + R)efdVv

So if we define
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We have the following:

Lemma 9 (Perelman) Under Ricci flow, W is non-decreasing, in fact,

%W = 2/ |DiD; f — Rij|*efdV >0
Proof.
4 /( IDifD;f + R)e!dV
at at J VT c
o g )
— [126" 4" RuD. D, + 27D D5 1) + AR
)
+ 2[Ry [P + (IDf” + R)(5,f — R)ledv
= [R(OP? +381DIF + DIV~ 2RAF - 2RIDST
q.e.d.

3 Logarithmic Sobolev Inequalities

| Prossodn [ Podutos | fodn < [ (9P 4V pi
M M M M

Or in other form,

[ Prossans [ 9P
M M

Where du = (2%)’%6’%@: and [, f?dp = 1.
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4 Perelman’s Estimate 11

We now begin to deal with the shrinking case. (Shrinking soliton)

Choose any T' > 0, look at 0 <t <T' < 00. Define
W= (=07t [T~ (DI + R) - ficfav

and let’s change the evolution equation of f:

f=—Df=IDfF+R— 5

0
ot (T —t)

then we have

(T —t)~"/? / efdV = constant

Lemma 10

d

—W =2(T —t)'="/2 / |DiD;f — Ry + gi; |2l dV

1
dt 2T — 1)

Remark. Here T is just a parameter, does not need to be the blow-up time. (If we

divide by T', we should get the first formula?)

M=

Proof. In this proof, let’s put a on f and W, because we want to use the formula
we derived before. And let f and W be as in section 2,

Let =T —t, f:f—i—%logT, Y:ffefdv, we have Df:Df, and

T‘"/Q/efdv — /efdv = constant

| @

n

JFI—AJF—\DﬂQJrR—m

S

t
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W:T/(|Df|2+R)ede—/(f—l—glogT)ede (4.1)

=W -Y — glogr/efdv (4.2)

We also need the following

%Y :%( / feldv) (4.3)
:/[(f + 1)ef%f — Rfeljav (44)
= [A + Vel -8 = PSP + R) - Rpeh ) (45)
:/fef(—Af— |Df|2)dV+/ef(—Af— IDFE+R)AV  (4.6)
:/f(—A(ef))dV+/(—A(ef)+Ref)dV (4.7)
—/ef|Df\2dV+/Rede (4.8)

Here we have used

Nel = D(e!Df) = e/ (Af +|Df?)

and integration by parts. We also have

/(Af)efdv = —/nyPefdv
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Now we can compute %W:

d - d
yrild :T2/|D,~Djf—R,~j|2ede—/(|Df|2+R)ede—EY+2£/ede (4.9)
T

=2T/yDiDjf—Rij\zede—z/(\Df\%rR)efdv+;/efdv (4.10)
T

:27/’Dz'Djf—Rij\Qede—l—Q/(Af—R)edejL;/efdv (4.11)

T

—or [1DDF — R+ 2 (Af— R+ " 1elay 412

=27 [ [|D;D;f — ¢j|+;( /= )+@]6 (4.12)
1

:2T/|DiDjf_Rij+mgij|2€fdv (413)

q.e.d.

We now no longer keep the ” =7 on f and W.
Corollary 3 W is non-decreasing under the Ricci flow.

In next section, we want to estimate the lower bound on the injectivity radius.

5 Injectivity Radius Estimate

The reason we want the injectivity radius estimate is that if p < \/Kl—, then if we

choose the point where the injectivity radius is very small as the origin, dilate in
the space such that the injectivity radius keep fixed as 1, and take the limit as time
approach the blow-up time, then we will get a flat manifold with some little loop, i.e.,

B! x S!. Where B! is the ball of radius 7 and S} is the circle with radius e.

Assume we have a ball of radius r around some point P, where |Rm| < %2 and

V(B,(P)) < er™, if € is too small, we can conclude that W is very negative, this

contradicts the fact that W is bounded from below.
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First let us change the notation, let
el =u

i.e.
Du

u=e? f=2logu, Df =2"—
u

T / efdv =777 / u?dV

SO

and

W —g/2 /[T(\Df\Q +R)— flefdv (5.1)

1 1
y— /[T(|Du|2 + Jfw’) — Su’logudV’ (5.2)



Chapter 3

Curvature pinching

The structure of this chapter is organized as follows. In Section 1, by using the
maximal principle for system, we can study the reaction ODE system instead of the
PDE system.. In section 2, we derive the pinching estimate for three-manifolds. In
section 77, we study when the curvature condition is preserved. In section 3, we
derive the pinching estimate for positive Ricci curvature. In section 4, we study the

general curvature pinching condition.

1 Maximal Principle for System

Maximal principle proved to be a useful tool in Ricci flow. We need to establish the

following;:

Proposition 4 (Hamilton) If a tensor F' evolves by a diffusion-reaction equation

)
= AF +8(F) (1.1)

23
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and if Z s a closed subset of the tensor bundle which is invariant under parallel trans-
lation and such that its intersection with each fibre is convex, and if Z is preserved

by the system of ordinary equations in each fibre given by the reaction

d
—F = &(F) (1.2)

then Z is also preserved by the diffusion-reaction equation, in the sense that if the
tensor lies in Z at each point at the start, then it continues to lie in Z subsequently.
For preserving curvature inequality in the Ricci flow we take Z to be a subset of the
bundle of curvature operators M which is convex in each fibre, and check that Z is

preserved by the curvature reaction

d
M = M? + M* (1.3)

Proof. See [3] q.e.d.

The importance of above Proposition is that it allows us to study the reaction

ODE system instead of the PDE system.

2 Pinching Estimates for 3-manifolds

Let’s consider the Einstein tensor E;; = $Rg;; — R;;. Eigenvalues of Ej; are princi-
pal sectional curvature. In an orthonormal frame {Fy, Fy, F3} which diagonalize the

matrix F,; , Fj; is the sectional curvature of the plane spanned by {F, F3}, i.e.,

J

E11 = Rasa3. If we pick an orientation which gives the volume form w;;j, then

T S
Rijir = Epgg™ 9% uijrungs



2. PINCHING ESTIMATES FOR 3-MANIFOLDS 25

We also know that in the orthonormal frame, R;; is also diagonal. Hence if we have

A 00
Eij=10 u 0
0 0 v
wtv 0 0
R;; = 0 At+v 0
0 0 A+up

and finally, R = 2(\ + p + v) is the scalar curvature.

Now let’s consider the evolving orthonormal frame defined as before

)
F,=F'—
“0xt

9
EFJ = g"RjvF}

And the pull back metric gu, = gi; F.F b] is constant in time. We have

0
aEab = AEy, +2(E? + E7)

if

A0 O
Eab - 0 % 0
0 0 v

then
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A0 0
EL=1 0 2 0
0 V2
and
pry 00
Efzk, = 0 v O
0 0 Mu

The equation

d
%Eab = 2(E%, + Eﬁ)

gives us a system of ODEs on 6-dimensional space of symmetric matrices. And we

are looking for convex set Z C R® preserved by ODE, and hence by the PDE.

Remark. 1) Since we define the convex set Z by the eigenvalues of matrix (or any
other tensors), it will be invariant under parallel translation, so we only need to verify
it’s convex and preserved by the ODEs.

2) The ODEs preserve the diagonal form, so we only need to consider on the subset

of diagonal matrices.

And now the reaction equation for E,;, (in the space of symmetric 3 x 3 matrices)

descends to the reaction on the diagonal terms (a, 3,7) in R? given by the system of

ODE:
%%/\ = A2+ v
paih = W W
%%y =12+ \u

Let’s assume that A > u > v, and this order is preserved by ODE. We have the
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following;:

Lemma 11 The functions A\, A + pu, A\ + p + v are convex functions. The functions

UV, L+ v, A+ 4 v are concave functions.

3 Pinching Estimate for Positive Ricci Curvature

Assume that M? is compact with Ric > 0, that means
pw+v >0

on M. So

w4+v>e>0

for some € > 0 at t = 0.

Let’s define the pinching set
Z={Ep: \—v<A(u+v)"  and \+pu < B(p+v)}

for some constants A and B we will choose below, we can always choose A, § and B
such that this is true for any initial metric on compact 3-manifolds with positive Ricci
curvature, then for the fixed , we can choose A < oo such that this holds everywhere

and at any time t > 0.

Proposition 5 On a compact 3-manifold with positive Ricci curvature, we have

A—v < A(p+v)'?°
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for some constants A and 9, hence if X is very big, then

A—U

<1
A

Now the following

Lemma 12 If R;; = fg;; for some scalar function f and dimension is larger than 2,

then f must be a constant. (For example, see Gallot, P. 109.)

says that around where A (or R) is very big, it must be constant curvature. Notice
the lemma is a local argument. Now by using the derivative estimate on curvature, the
curvature can’t fall off rapidly, and by the continuity argument, it must be constant
curvature everywhere. (7 but that’s on limit, before limit, why is it even true for
locally to be a constant? Now on the limit, it’s constant, so before the limit, it’s
almost constant in a small neighborhood, then apply the derivative estimate and

using the continuity argument.)

4 General Curvature Pinching Condition

Conjecture 1 For n > 4, there exists ¢ > 0 such that

Rijupijen > eR|p|?

1s preserved by the Ricci flow.
Conjecture 2 The positive Ricci curvature is preserved by the Kahler — Ricci flow.

Remark. Because of Perelman’s estimate, the type I singularity of Kahler — Ricci-
flow must be compact. (Injectivity radius and volume estimate lead to the bound on

the diameter.)



Chapter 4

Ricci Soliton

The structure of this chapter is organized as follows. In Section 1, we talk about
maximal principle. In section 2, we present some Harnack inequalities. In section 3,

we study gradient Ricci soliton. In section 4, we study eternal solutions.

1 Strong Maximal Principle

Theorem 1 If
0
8tf > Af (1.1)

on M™ (need not to be complete) for 0 <t < T, if

f>0
everywhere and
f(P,0) >0
for some point P, then
f(@Q,t) >0

29
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for all Q and t > 0.

2 Harnack Inequality

If a solution to a parabolic partial differential equation is positive in some sense, then

we can try to derive so called "Harnack Inequality (Estimate)”, in the form of

0
aMax > —c

where —c is any lower bound.
Ezample.

Fz,t) = ce ™' sin(nx)

is a solution of

o 0%

ot O0x?

fma:c = Ce_th

d 2
afmax =N fmaz

Ezxample.

is a positive solution of the equation
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df . c o fmam
ar’mr o329t

Corollary 4 Any non-negative solution of

o, o
ot Ox?
satisfies the following inequality:
a fm(l!l?
il >
ot finaa 2 2t

fort > 0.

Theorem 2 If f is any positive solution of

i = 55t
then
ol 4 2 P
Proof. Let
b=l + 5l — 1)
q.ed.

For curve-shrinking flow, we have
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For Ricci flow, we have

0 1 1
— _ > 2
SR+ R > —|DR

For mean curvature flow, see
For gauss curvature flow, see Chow.

For Yamabe flow, see Chow.

Theorem 3 Suppose we have non-negative curvature operator, then

0 1
i _ > f,l . .
8tR+ tR > R D;RD;R

3 Gradient Ricci Soliton

In chapter 7?7, we know that a steady gradient Ricci Soliton satisfies:

while the expanding gradient Ricci Soliton satisfies:
Dszf = Rij + Tgij

Remark. If r <0, it’s shrinking, if » > 0, it’s expanding.

Question: Are all solitons gradient?
Answer: See Perelman [5].

Let us look at steady soliton, if we take derivative and anti-symmetry, we have
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D;R;, — DjRiy, =D;D;Dy.f — D;D;Dy.f

=RijuD.f (3.2)
On soliton, let us define
Piji, = DiRji, — DjR;, = Rijiu D f

contract (j, k) we have

1
DiR— 5D;R = ~RuDyf

or
D;R+2R;;D;f =0 (3.3)
Now on a soliton,
Di(R+ |Df|*) = D;R+2D;fD;D;f = D;R+2D;f - R;; =0
Hence R+ |Df|*> = M is a constant on soliton. This is Lemma 6 in Chapter ?7?.
For Kéahler-Ricci flow, pick f, such that
DoDsf = R,
and

DoDsf = 0= Ry
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For mean curvature flow:

H? + |Df* = constant

However, there is no equality known for Yamabe flow.

Now, we take another derivative on both sides of Eq 3.2:

D;D;Ry — DiDyRjy = D;Rjjim D f + RjkimDi D, f

= DiRjumDmnf + RjpimRim (3.4)
Contract (i,j)
ARy — D;DyRij = D;Rijim Dy f + Rimn Rikim, (3.5)
while
D;DyRy = DpD;Ry + Rigim Rim + Rikim Rim,
= %DkDiR + RimRim — Riitm Rim
and

DiRiklm = Dlem'Lk
= _DlRmmk - DmRzlzk

= DlRmk - Dlek

The second equality is by 2nd Bianchi identity. So Eq. 3.4 becomes:
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1
ARy — éDleR + 2R Rigmin — Rim R,

Define
1
Mkl = ARk[ - §DleR + 2Rmanmln - kale

Then on a soliton

My = Py Do f

Since Py = —Pouk, My + Prur D f = 0, we also have
P D f + Bimin D f Dy f =0

so on a soliton

My + 2Pk D f + Rimin D f Dy f =0 (3.7)

For any one-form W,
MWWy + 2P Wi Wi + Rignin Din f Dy fWe W, = 0 (3.8)
If we anti-symmetrize, let Uy, = %(WkDm f— Wy Dgf) then
MWW, 4 2P UpnuWi + Rimin Uk U, = 0 (3.9)
we can prove the following theorem:

Theorem 4 Given solution to the Ricci Flow, complete with bounded curvature, and
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with positive curvature operator, i.e.,
RapedUabUed 2> 0
for all 2 forms Uy,. If it’s an expanding soliton:
Ri; = D;D;f + %gij

Then:
1
Z = (Mab + %RabWaWb + 2Pachach + RabchabUcd Z 0

for all W,, Uy on soliton: U =W ANDf. W and U on soliton has special relation.

Proof. Z >0, small ¢t > 0. maximal principal.
if Z = 0 somewhere, find first time t, point p, W, U where z = 0. extend W, U

to no bound. at point p,

Danc = %(Rach - Rach> + %(gach - gach

DW, =0

1
(Dt - A)Wa - zWa, (Dt - A)Uab - O

(only at p, require anti-symmetric of b and ¢)

(Dt - A)Z :(Pachc + Rabchcd) (PabeWe + RabefWve)
+2RabchchaWb - 2PachaWb + 8RabcepdbeUach

+4Raecf Rbedf UabUcd > 0
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at non-vector.

Write

Z=3" NIV, U) + (X, W)

0

then

(De=D)Z =1y NV, U) + (X, W) Vi

+ Z )\M)\N([VM, VN], I/)2

N

+ 3 (ViraXy = ViyaXar, W)?

M,N

>0

(

M: X xX
P:XxV

Rabcd VxV

\

Trace Z, write Uy, = %(—Wa‘/}, +WyV,) =V AW, Z = quadratic in W in each V.

trace W, > orthonormal basis of W’s.

1
My =ARy, — §DanR

1
+2RacbdRcd - RacRbc + 2_tRabWaWb

trace = AR — %AR + RogReq + %R
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trace M = 1AR + |Ric|* + %R,
1
Pachach - (DaRbc - DbRaC)‘/aWch - +§DbR : ‘/b
trace Rabcd%Wb‘/ch = Racva‘/ca

1 1
TR [Ricl + +5 AR + DaRVa + RapVaVy 2 0

all V.
2%3 + | Riel® + 2D, RV, + 2RV, Vi, > 0
0 1
aRt + 2_tR +2D,RV, + 2R+ abV,V, > 0
all V.
in fo:
D,R+2RV, =0
Vi, = —%R;;DQR
Hence

B 11
YRt+-R>-RD,RD
5 Rt + TR > SRy D.RDR

when n =2, R, = %Rgab, SO R;bl = 2%9@1

This is the trace form of Harnack Inequality.

Conjecture 3 Is the Harnack Inequality true for Ric > 0 in dim 37

Remark. Positive Sectional curvature = Positive Ricci curvature.

In Ké&hler case, if the manifold has positive holomorphic bisectional curvature (which
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is preserved by Ricci flow), i.e.,
RopssWeZPW32° > 0, YW, Z.
1
MQB - §AR045

DaRﬂg - DﬂRag

DoyDj =D, DjR.

:DOCDERzB
:DCDERO(B
=AR,3
Hence the Harnack Inequality is:
0
—R.t+ >0
gl 2

4 Eternal Solutions

Eternal Solution with bounded curvature are important because they occur as models

of slowly forming singularities.

Theorem 5 Suppose we have a complete solution with bounded curvature to the Ricci
flow with (weakly) positive curvature operator for all time, —oco < t < oo, and suppose
R attains its mazx at some point p, for time t. Then the solution is a Ricci gradient

soliton, i.e., 3f with R;; = D;D; f.
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In dimension 3, if we have a type 2 solution, then the limit satisfies —oco < t < 00,

R(0,0) =1, R(z,t) < 1 and R,, > 0 by the pinching estimate.
Corollary 5 In dimension 3, any type 2 blow up must be a soliton.

This is also true for dimension 4 when the metric has positive isotropic curvature.

Notice if the solution is ancient (or etenal), then the { term in the Harnack
inequality will drop, because we can start at any negative time —c and that term will

become HLC, let c— >— oo. Hence the Harnack inequality for ancient solution is

%R +2D,RV, + 2RV, Vi, >0

Corollary 6 On ancient solution with non-negative curvature operator, R increases

everywhere.

Proof. 2R >1iR'D,RD,R>0 q.e.d.



Chapter 5

The L-function and Harnack

Estimate

The structure of this chapter is organized as follows. In Section 1, we talk about
Perelman’s L-function. In section 2, we present Li-Yau’s Harnack estimate. In section

3, we derive Perelman’s Harnack inequality in a different way:.

1 the L-function

Suppose we have a solution to the Ricci flow

0

5795 = —2R;;
on M for0 <t <T.
Let 7 =T —t, a% = —%. In space-time,
Define ' '
L(v) = /: VT(R+ gijd—qj : %)dT

41
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L((P,71),(Q, 7)) = infy £(7)

Let us take a 1-parameter family of paths, with parameter u. i.e.,

Xi — i
87’x
0
Yi—— ot
8u$

X,Y on the tangent space are space like.

along path
d o 02t 0

d7_87'+87'8$i

In the following, we will compute D;L,D;D;L and then trace of D*L = AL

(8%" 4T %a_xk) 0
oT2 *or or’ oxi

0%x ; 027 9z% . 0
DY =(5s+ Ty o) 5

D. X

Let £ = L(u) = [ V7(R+ g;; 222 )dr

or Ot

2.4 J k J
/ \/_ OR OxF o0“r* Oz 0gi; Ox Ox' Ox dr (1.1)

(o au 295550 o t 00k 0w o7 o7

If we fix the end points

dx" Ox? _ ”d Ox* Oxd
0= vy o = [ G
9%zt Oxd oxt 0%a? oxt 07
/JWWm&Q%ﬁ?”%%E

0gij Ox* 0x' 027 1 Ox' Ox’
Oxk Or Ou Ot + 279700 or ydr (1.2)
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Here, we assumed the following: x'(7y,u) = p’ and z%(72,u) = ¢ or %—fj =0 at
T1,7T2.

Otherwise, we will have a boundary term:
20T <X, Y >

IfY #0 at , =7, i.e., we only fix the initial point.
(1.1) — 2( 1.2), we have

Ox* 0R 9219 ;a0 P Y
/1 \/_5U ook 2l A Tag-50) AR p - — gk ]dT (1.3)

The advantage of local coordinates is aiz , 88 , 8(1 just act as ordinary derivative, but
we need to keep in mind that for the result we need to put into a form tensor-like, so

that the result is coordinate independent.

And we can rewrite (3) as

dL 2 Oxk 0 Ox® O W 0" 1y 1 027
i /‘r1 2\/?%9%[(@ + le o o7 —)+2g le? - 59 DR+ a—g]d
(1.4)

when it is a minimal path Z—ﬁ =0 for all %—f =0 at 71,7%.

So we have the following lemma:

Lemma 13 The equation for L-minimizing path is

0% Ozt O or™ 1 1 047
I’ 20" Ryyy—— — =¢"'D;R + =0 1.5
R T T e (15)

From now on, we ignore all I'’s or 8@9.
X
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Next we compute the second variation formula for £:

U ozk 0z'  OR 9%*a* 5 Pxt O’
du2 / axkaxz'%'% "o aw T 500 a7
2, 0%t 9227 N gy OxF Oz' Oz’ 035])

U 9roudrou | dxkdri Ou Ou Ot Or

dr (1.6)

Now we only fix the start point. Let 7 =0, 7, = 7.

_ 02a’ - OxF 0xt O
2\/; < DYY,X >|end / _{2\/_923( kl ou 8u> or
83:El 8IJ o 0 0 oz* 0x! 927
-/ {M% 0wt o7 T2Vt gt = g ) 5y pu o

. 0x™ dxk Ox! O D*x' 9%’
T i T e G e
82 ‘ 1 0% o)
+4\/_R,Lj a 2 \/_g”wa}dT

+2\/_9U(

Here we used

d. o, a8 . o
Erkl o7 L+ o7 eyl I 9r
and
9 i 0 0
EFM { gj{mgzz O a9k — o ngk}}
T B )
= g fn + g o = g i}

SO

2L T ] 0%zl 9%
= = 2V/T < DyY, X > +/0 [DyD,RY"Y" + 291'3'% : 37’3u]+
92 52 0? 0%  0x? Ox™ OzF O

V-

a9k T

50 9 ™ Haman 9t t g M T Gukoni ) o or du 9w
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Now let us choose Y = {%—fj} to solve the first order ODE on [0, 7]:

Oat | 002k Ot 1020
orou T or ou "9 Y00 T 25 ou

Lemma 14 IfY solve the above ODE and |Y (7)| = 1, then [Y|* = L.

Proof.

d d ox' Ox?
V2= g 2
Y] dr {9: ou Ou }

dT 2 . . .
i Hopd i ol
:291'1‘%% + QRiJaa_Z%
Loy O = Ly
s0: %(@) = 0. Hence [Y]* =I. q.e.d.

Remark. we can see from above that Y — 0 as 7 — 0.

So we have
d’L _
Hessp(Y,Y) == 2V7 < DyY, X >
U
1 T
=— — 2/7Ric(Y,Y) — / VTH(X,Y)dr
VT 0
Here

H(X,Y)=2[M;Y'V? — PpY' X7Y* 4 R X X7 XFX]

1 1
M;j = AR;; — §DiDjR + 2R R — Rix Rji, — ZRij

Pijk = DiRj, — Dj Ry,
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Since we have fixed the start point P, 71 = 0. Let
L(Qa 77_) = an’Y‘C((P7 0)7 (Qa 77_))

We first verify that for a gradient shrinking soliton, if a point flow along D f, then

the result path is the ” L-geodesic”. Since
1
Rij = —DZD]f + Zg”

“L-geodesic” attains minL solves the second order ODE:

R - dxd dxk 1 .. 1 da’ iy dzF
—_— Lo—— ) — =YD, R+ — 20" Rijp—— =
(d7'2+ Ik dr dT) 99 i +27’d7'+g & dr 0

dzt Oz’ g

— — ¢ D,

dr or 9" D;f

af .

— = —¢"D,fD,

aT g f ]f

df of of da’ _0

dr  Or Ozt dr

DyRij — DiRyj = — Rpijug™ Dy f

trace by ¢:
1
DyR = 5DyR = Rurg® Dy f

i.e., DhR = 2thglelf'

So,
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= D+ n,n - 2
= 29" Rug" D;f + 9" Dj[~g" Duf Duf] + g7 aj'jng %_aj
- _QQinjk(il—af —297¢"D;Dy.f - Dif + g7 85§§$J‘ 88_:2-]6
(again, we ignore I''s in calculation)
So
T DR R
— 2R 2 DD D g S
_ %giijR+ % gD, f + 29injkCil—$:
= —29injkCiZ_:ik — 29" " (= Ry, + %gﬂ“)le
+ 9" (=R + %gka‘)%—f a %giijR T %giijf + QQinjk(ii_f
=2¢" "Ry Dy f — ginkj%_:]U: - % “D;R

= 29" Rj.Dif — ¢” RijDy.f — 9" RjxDi.f

=0

We used Dy R = 2R,,.g" D, f in the last step. So we have proved the following:

Corollary 7 The gradient flow of f actually is a L-geodesic.

47

Remark. For those who are more familiar with Hamilton’s notation, this might be
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a little confusing, but always remember that Perelman’s potential function is the

negative of Hamilton’s.

2 Li-Yau’s Harnack Estimate

Let us first recall Li-Yau’s Harnack Estimate: Let u > 0 be a solution of the heat

equation.
Ut = Ugy
take u = ﬁe*zz/ 4 be the fundamental solution.
Let F = Z—z, SO u = —(4ﬂ1)1/2e_F
ou 1 -F| oF 1 ]
—_—= —F -
ot (4mt)/? ot ot
Uy = ——eF[_F,. + |DFJ
SO
OF 1
— =F,, — |DF|?] — —.
ot ‘ | ] 2t
Let H = F,, — % This is our Harnack quantity. Harnack vanishes on Founda-

mental solution. Since

1
Fop = —.
2t
We have
H,=F +1—(F |DF? 1) L _F 2F,F, 2R 4
t — L xxt 2t2 - xT 2t xT 2t2 — L xxxx xd rzxx T 2t2
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Hx = mew

Hac;r = Fac;rzx

SO
H,=H,, —2F, - H 2(H+1)2+ !
t — rx x T 2t 2t2
i.e.
2H
Ht:HM—QFx-Hx—2H2+T

For any finite solution F', as t — 0, H — —o0o, so by maximal principle, H < 0

for all ¢ > 0. i.e., on fundamental solution (which is not finite), H = 0, otherwise

H <0. So

Fo< L.
2t

1

Ft:Fxx_Fa?:_

2t

1 2
dF dx
— =F+F, —
dt et dt
dx
< -—F*4+F,.-—
=Tl ey

1dx 1 dx

YR

So along any path:
dF 1 dx,
<

a =1l
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Hence V1, xs, ty >t

1
F(xg,t) — F(x1,t1) < 1 /tl (E)Zdt

Among all possible path

i.e., the path is straight line.
dr  xy— 11
dt — ty—t

SO

1 (29 —x1)?
F(Ig,t2> S F(l‘l,tl) + —g
4 to—1t

2
1 e:v/4t

wE satisfies

SO U =

t2 1/2 2/4
u(zg,ty) > - e~ (2—x1)?/ (tZ_tl)u(:El,tl)
1

Remark. there exists a suitable choice of center of the fundamental solution, such

that the above quality holds.

3 Perelman’s Harnack Inequality

Suppose we are on a gradient shrinking Ricci soliton, as before, we take a fixed vector

bundle and evolve a moving orthonormal frame

F* = F'—
4Ozt
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by

0 -

— = ¢V R, F*
ot 9 ita
and we have

Rab + DanF = PYGab

here

SO

D.Ry. + D, DyD.F =0

commute (a,b) and contract (a,c), we have

D,R = 2R, DyF

we also have:

(Dt - A)]:')«ab :2RacbdRcd
(Dt — A)DanF :Dan(Dt - A)F + 2RacbdF’cd

0
(Dt - A)pgab —(ap)gab

hence

0
DoDy(Dy — A)F + 2Rucpa(pge) + (8—’;)% =0

1.e.

0
DuDy[(Dy = A)F = 2] = (5 = 20")gus
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hence
(D — AYF = 2pF + b(t)
d
and 3£ = 2p°
S0 p = ﬁ, since as t — T shrinking soliton will blow-up at every point. or
p= 1

This is because A[(D; — A)F — 2pF| = (% — 2p?)n on a compact manifold, the
right hand side must be 0.

On the other hand, derive as before, we also have
5 1 1
D.R+ |DF|* = —F]=D,R+2D,DyF - Dy)F — —F, =0
T T

1.e.

rR+pFP-E —cw
T

where C/() is a constant in space. We can pick F', such that this constant C(t) = 0.
Remark. we will see later that the choice of this constant makes difference.

so R+ |DF|* =1F

Next we find the value of b(t)

(D, — AR =2|R,|?
(D; — A)|VF]> =2D,F - D,[(D; — A)F] — 2| D, D, F|?
1 1 1
(Dy = A)(=F) = F +—(D, = A)F

T T2
So

1 1
0 =2|Rc|* = 2| Do DyF|* 4+ 2D, F - Dy(2pF) — F — =(2pF +b)
T T
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1 2F b
2p% - n—4pAF +2.2. p|VFP = —F -2 _2
T T T

SO

1 1 F b
20%-n+4p(=F —np) — =F — — — = =0
T 2 T2 7
b 5 2 n 2F
So
b_n no_ n
T 272 12 972
b
2T
1 n
(D — A)F =—-F — —
T 2T
0 1 n
—F=AF+-F— —
ot +7’ 27
1 1
NP PR Y
2r T T 2T

i.e. F moves by its own gradient flow!

We can write in another form

oF OF n
—— =—=AF —|DF}? -—
ot~ or IDF["+ R — o

53
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F

now let u = (477)"2e"F, easy to verify that u satisfies the following adjoint

forward heat equation:

0
a—z:Au—Ru

i.e., if v satisfies % = Aw, then

/ uv = constant
M

Let H=2AF — |DF|*> + R+ %F — 2, then on gradient shrinking soliton, H = 0.

Theorem 6 (Perelman’s Harnack) If u is any positive solution to the adjacent heat

equation
0
8_7; = Au — Ru
suppose
u= (4n7) 2 F
and
9 1 n
H=2AF — |DF|*+ R+ -F — —
T T
then

OH 1 1
“= 4+ 2DF-DH = AH — ~H — 2|Rop + Do DyF — — gup|?
or T 27

moreover max(TH) is decreasing as T increase.

Notice that if u is like a d-function, i.e., F' ~ %. or if u is smooth, F =

1
(47TT)%U

log ,as 7 — 0, ' — +00. So we can not apply maximal principle directly to

H. Nevertheless, we have

1
%(TH) +2DF -D(tH) = A(TH) — 27|Ryy, + DDy F — Zgab|2
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hence we have the above theorem.

If uw— 0(p,0), as 7 — 0. Since

which is finite.

SotH - 0as7—0

by the above theorem, 7H should be negative for all 7. so H < 0, but this is
only true for the positive solution whose initial data is heat kernel, remember that
Li-Yau’s harnack is true for any positive solution.

Now let

be its conjugate operator. Since

/(Du) v = /u(D*v)

to verify the above, consider

/ / —u)v +u —’U) + uv(—R)
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SO

0 0 0
/(g—A)u-v—/—ungrR-u-v—u-Av—/u(g—A+R)v

Now suppose h is a positive solution to
Oh =0
Let v=7Hu

Lemma 15

1
Oy = —QTu’Rij + DZD]f — Zgijﬁ <0

Proof.

O*v :(a2 — A+ R)(THu)

T

:u(?g(TH) + (gu) -TH —uA(tH) —THAu—V(TH)-Vu+ RTHu
T T

:u(%(TH) — A(TH)) + TH((%U — Au)+ RTHu—V(TH)-Vu

1
=u(—2VF -V(rH) — 27|Ri; + D;D; f — Zgijﬁ) +7H(—Ru)+ RTHu — V(7H) - Vu

1
== 27u|Rij + DiD;f — =g

Here we used Vu = —u - VF q.e.d.

We have:

Lemma 16 %fhu:o and%fhvz()
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Proof.

d oh ou
= | Ah

/

-u—h-Au+ Rhu — Rhu =0

d oh ov
E/hvz/av—ha—h’hv
> [ Ah

-/

i.e., as 7 decreasing, t increasing. f hu is a constant while f hv is increasing.

v—h-Av+ Rhv — Rhv =0

q.e.d.

Now as 7 — 0, if u — § — function, [ hv — 0. So [ hv <0 for any 7 and any h > 0.

Sov <0, forallt<T.

Corollary 8 Ifu — 6, as 7 — 0.

1 F 1
H:2AF—|DF|2+R+—F—Q:2a—+]DF]2—R+—F§O
T T or T
Along any space-time path = = x(7).
d oF dx

Srp=""4pr. =
dr 8T+ dr



58 CHAPTER 5. THE L-FUNCTION AND HARNACK ESTIMATE

d OF dx 1
Lovir) =27 L oy E 4~ p
dT(\/? ) =27 87+ VT d7+\/F

| dr 1
<J7(~|DFP?+R— -F +2DF - "% + ~F)
T dr T
dx

=\/7(—|DF|* + 2DF - d—) + R\T
T

dx

dx o 9
:\/F(—|DF—E| )+\/F(R+(E) )

dx

<VAHR+ ()

Integrate from a point p and 7 = 0 to a point ¢ and 7 along a path x = z(7)
where as 7 — 0

x=x(7) = 2\/TV + - - - (higher order)

F%%:\U\QandﬁFHO
we have

T d
2V7F < / VT(R+ ]d—xIQ)dT = L(q,7)
0 T
as defined in Perelman’s paper [5]. Recall

1
l=——=L
2\/T

Corollary 9
F <l

We also have a nice lower bound on heat kernel:

Corollary 10

uw= (4r7)"2e F > (dnr) "5
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Remark. 1f injectivity radius — 0, these estimates are not good, because all heat

kernels are summing up. (?)

Using the above, we can also derive the entropy estimate as a corollary:
W= /T—S[T(R +|DF? 4+ F —n)e Flav = /vdV
Notice that
/THeFdV = /[T(yDFP + R)+ F —nle fav
and
/AF e Fdv = / |IDF|?- e FdV
* 1 2
-

where

v=1Hu=172e¢ F(rH)

we get the above identity via integration by parts. Now we state the entropy

estimate as a corollary:

Corollary 11
aw ov

= (= < =
77 (87 + Rv)dV < /(Av)dv 0
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Chapter 6

Ancient Solutions

1 Basic Properties

Suppose we have a solution to the Ricci flow

0

5795 = —2R;;

which exists on —oo <t < T < oco. We call this an ancient solution.

Remark. Not all solution can be ancient solution.

Example. The fundamental solution to the heat equation

Uy = Ugy
R

U = —e 4t
Vit

can only back to ¢t = 0.

And we have the following theorem

61
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Theorem 7 If u is an ancient solution for u; = Uy, on —oo < t < T < oo and

0 <u<cg, the u is a constant

Proof.

q.e.d.

Now let us assume the metric has weakly positive curvature operator
Rijripijpr > 0

for all p;; # 0,0 € \”
Remark.

1. This condition is preserved by Ricci Flow
2. In dim 3, positive curvature operator is equivalent to positive sectional curvature

3. This condition implies Harnack estimate (or in the Kdhler case with positive

bisectional curvature) we have

0 R
- — >92R:'D,RD;
82&R+ = R DiRD;R (t>0)

If we have a solution on a < t < T', the above inequality changes to

0 R
—R+-—— >2R'D;RD;R
ot t—a =Y !
Now if we have an ancient solution, let o — —00, t — a — 00, == — 0, so we

’ t—a

have

9 -
o1 = 2R, DIRD; R
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hence R increases point-wise. So the current bound on R on a set implies bound

on any early time on the same set.

Theorem 8 If we have an ancient solution with bounded curvature and has nonneg-
atie curvature operator, if R attains its space-time maximum at an interior point

(p,t), then the solution is a steady soliton
Rij = D;D;f

Proof. strong maximum principle applies to Harnack estimate. q.e.d.

Next we define two important quantities for complete ancient solutions with

bounded curvature and has nonnegative curvature operator.

Definition. Let us pick any point as origin, let s denote the distance to origin 0, let
B;(0) denote the ball of radius s around the origin, and let Vol(B;(0)) be its volume.
Since the manifold has weakly positive Ricci curvature, the standard Bishop volume
comparison theorem tells us that

Vol(Bs(0))

Sn
is monotone decreasing as s increase. We define the asymptotic Volume ratio

B 7210:X0)

§—00 s
Definition. Let 0, s as above, let R be the scalar curvature, we define the asymptotic

scalar curvature ratio

A =limsup Rs?

§—00

Remark. The definitions of v and A does not depend on the choice of the origin. For
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more details of those two quantities, the reader can check Hamilton’s survey paper

[4]. We will the proof for now.

Theorem 9 A is independent of time t under the Ricci flow. Moreover, if we assume
|R| — 0 as s — oo (this is a condition preserved by the Ricci flow), then v is also

a constant under the Ricci flow.

Proof. cf. [4]. q.e.d.

Theorem 10 For dimension 3, if we have an ancient solution with |R,,| < ¢ and

R, >0, thenv =0 and A = co.

Proof.  ”"blow-back” in time (¢ — —o0). We will divide the proof into two cases:

I) limsup |t|sup R= < o0

t——o00 M

IT) limsup [t|sup R = o0

t——00 My
(for more detail, check note P63-66.) q.e.d.
Before we prove the above theorem, we state the following theorem (cf. [4] Thm.

24.7)

Theorem 11 Suppose we have a complete k-non-collapsed solution on some scale to
the Ricci flow on a three-manifold on a maximal time interval 0 <t < T < oo with
bounded curvature, and

(T —O)|Rp| <2<
then either

a) M3 is compact and M3 — S3/T ast — T

or
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b) M? (which is noncompact) has a sequence (p;,t;) where
(T = 0)[ B (pj; 1) = 6 >0

for some 0 and blow-up limit around (pj,t;) is S* x R'/T.

Proof. check note P67-72. q.e.d.

Suppose we have a complete three-manifold, which is an ancient solution to the
Ricci flow with bounded curvature on —oco < t < T. (by the pinching estimate, we
know that R,, > 0.) Let us do a blow back for t — —oo. We will have the following

two cases:

I) |[Ru|lt] <Q < o0, a8t — —00
or

IT) limsup |R,|[t| = oo
t——o00

If we take limit as ¢t — —oo around a sequence where scalar curvature R is

maximum. We have a solution satisfies either

I) —0c0 <t<Q |Ry| < g% and R(0,0) =1

or
II) —co <t < oo, |Ry| <1and R(0,0)=1

In case I, we can do another limit as ¢ — €2, this is still a backward limit of original
solution and ¢t — oo (forward limit of a backward limit is still a backward limit) and
get type I limit.

Apply previous result Thm. 11 we have either
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i) converges to S3/T", and the ancient solution is always S%/T.
or
ii) another limit converges to S? xR!/T", and the ancient solution is always S? xR /T".

Question. Is it possible that the following ancient solution (Fig. 6.1) exist? If it

exists, is it Type 117

Figure 6.1: ancient solution

In case (ii), there exists backward limit rescaled around R(p;,t;) which attains

maximum at time ¢;, and the limit is S? x R'/T" (Fig. 6.2).

S*xR

Figure 6.2: S? x R
So v = 0 and if it is k-non-collapsed, then A = co. Because if Rs? < A < oo, then

S

=9
Ja_”

g radius > k -

and (see Fig. 6.3)
Vol(Bs:(0)) = Vol(Bs(p)) = es”
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hence

Vol(Ba: (0))

w

>n>0

—~

oo
VA

~— |
3

this is a contradiction.
In the above, we use the k-non-collapsed condition plus ¥ = 0 and get A = oo.

In case (II), since R attains its maximum at (0,0), so M is a steady soliton with

Rij=D;D;f >0

By a former theorem of Hamilton (cf. eternal solution), we have

A =00

(otherwise the backward limit on M™ — {0} gives a complete flat metric on R™ — {0}

which we know does not exist.)

Figure 6.3: asymptotic volume ratio
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Since A = oo, we can do a blow-out limit as p — oo which splits a flat factor
N? x R, where N? is also an ancient solution, and K k-non-collapsed, so it must be
S%. Now out limit is $? x R!/T" and hence v = 0.

So in case II, we also have A = 0o and v = 0.

Hence in dimension 3, we prove that A = oo and v = 0 for Kk-non-collapsed (all

scales) complete ancient solutions.

2 Local Estimates for Ancient Solutions

In this section, we shall analyze complete ancient solution to the Ricci flow, which is k-
non-collapsed for some k£ and all scales with bounded curvature on —oo <t < 7T < o0.

We also assume the following conditions:
1. Nonnegative curvature operator R,, > 0
2.v=0

Remark. In dimension 3, both conditions are satisfied automatically, for higher

dimension, Perelman [5] proves the second condition is true.

Theorem 12 (c¢f. [5] 11.6(a)) For all w > 0, 3C = C(w), such that if we have a

solution satisfies all conditions described above, and for some point P and r > 0,

Vol(B(P,r,t)) > wr" Vit € [to, T

then
C
t— 1ty

R(z,t) <COr2 + V(z,t) € B(P, g,t)

Remark.
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1) Here C is a universal constant, which does not depend on an particular solution

of the Ricci flow

2) there is a small difference between this argument and Perelman’s, which is a local

estimate. (7)

3 Analysis of Ancient Solutions

(Q: Did we use v = ¢?

Suppose we have a solution to the Ricci flow

0
5% = — 20

satisfies the following conditions:

(1) complete with bounded curvature.
(2) (ancient) the solution exists on —oo <t < T < 00
(3) Curvature operator R, > 0

(4) In the class where asymptotic volume ratio

i VOUBL(O)

5—00 s

=0

Remark.
(a) condition (3) is always true in dimension 3 by the pinching estimate.

(b) condition (4) is always true for dimension 3 (if (1)-(3) is true).
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(c) Perelman proves that under k-non-collapse condition, for some k and all scales,

(4) is true (if(1)-(3) is true)
(d) Hamilton conjectured that (4) is true for all n.

Ezercise. If Rs® < oo, prove by Bishop volume comparison theorem that the blow

up limit will be cone-like.

Lemma 17 For all e, A = A(e, k), such that for any solution satisfies condition
(1)-(4). Inside any Ball B(P,r) for some point P and radius r, if

sip RQ)r —d(P.Q) > A
QEeB(P,r)

then
Vol(B(P,r)) <er"
Proof. Suppose it is not true. So there exists a ¢ > 0, for any A; — oo, we can find

{Mj>gj?Pj>TJ'}

such that

sup  R;(Q)[r; — d(P;, Q) > A;
QEB(Pj,ry)

but

Vol(B(Pj,rj)) > erf

Suppose the sup attains at @);. i.e.,

R;(Q))[r; — d(P;, Q)] = A;
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and

R;(Q)[r; — d(F;, Q) < 4;

—_—

for all other (). Rescaling such that R;(Q;) = 1. Let

1
J
SO
L
T RQ)

(after rescaling, p; = 1)

Take (Q; as the new origins, and take the limit of rescaled solution. Since Vz,

r—d(P,x) > (r—d(P,Q)—d(Q,x))

r_d(Pj’Qj) = \/ R;Eléj) = \/Xj'pj

r—d(P,Q) —d(Q,x) = \/Ajp; — Bp; = (\/A; — B)p;

Let d(l‘, QJ) = ﬂpj

SO

Hence

Rj(x) _ (rj—d(PQ))°  Apy 1 1
R;j(Q;) = (rj—d(Px)? (VA -6 (1-— ﬁ)Q

as A; — oo for fixed . (why fixed? 3 is fixed means x is in finite distance from @);.)
Since it is k-non-collapsed, so the limit exist and R(0) =1, R <1 at time 7. (7)
Because of the Harnack inequality, this is also true for all ¢t <T'. Hence the limit

is still a solution to the Ricci flow with condition (1)-(4). i.e., ¥ =0 on the limit.
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For given ¢, there exists radium \g, such that, for all A > Ay, then
vol(B(0,))) < e /27!

because

B(Q,2r) 2 B(p,r)

for r large enough. so

Claim 1
vol;(B(Pj, ) < wvol(B(Qj,2r;)) < e\"/2"

Since vol;(B(Q;,2r;)) — vol(Bx(Qoo,2r)), now take r; = % — 00. Soif j is

J

large enough, then
Q > Ao
Pj

SO

voly(B;(Qy,2r)))  voL(By(Q;.52))
- (2r)" @2/
< UOZJ(BJ(QJ7/\0)) - 00l 56 (Boo (Qoo, Mo)) < €
- (o)™ (Ao)™ -t

If 7 is large enough, then before convergence, we also have

vol;(B;(Qy,2r;))
(2r;)m

€
<
S on
On the other hand,

vol;(B; (@, 2r5))  voly(B;(F;, 2r5))
(2r;)" a (2r;)"
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so vol;(B;(Pj,r;)) < er?.

This is a contradiction, hence our lemma is true. q.e.d.

Theorem 13 For all k > 0, all A > 0. 3B = B(k,\) < oo, such that for any
solution to the Ricci flow satisfies condition (1)-(3), which is k-non-collapsed on all
scales. If there exists a ball B(x,0) around some x and some radius o. we have
R< 2 in B(z,0) then R < & in B(x, \o)

o2 o2

Remark. In fact, 1 <X <oo. If A <1, we can take B = 1.

Proof. Because of the k-non-collapse,

vol(B(z,0)) < ko™

Since
B(z,0) € B(a, (A + 1)0)
choose
€< K
A+ 1)

by the previous lemma: JA = A(e, k). Since for Ball B(z, (A + 1)0),

vol(B(z,( A+ 1)0)) < ko™ > e((A+1)o)"

SO

R\ +1)o —d(z,Q)* < A

for any Q € B(x, (A + 1)o), so if Q € B(x, Ao), then d(z,Q) < A\o. so

A+ 1o —d(z,0) >0
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R(Q)-0* < RQ)[(A+1)o —d(z,0)]* < A
hence
RQ) <5

we only need to take B = A. q.e.d.

Theorem 14 For all k > 0, 3a = a(k) > 0, such that if we have a solution to the

Ricci flow satisfies conditions (1)-(3) and is K-non-collapse on all scales. Then for

any point x, let r = r(x) be the largest radius r such that R < % in B(x,r). We also

2
have

a
2

Remark. 1f we let 0 = \/a/\/R(z), then r > \/a/y/R(z). Since R < =% in B,(z)
and 7 > \/a/\/R(xz), we have &5 < 1R(z), hence R(Q) < LR(z), VQ € Bz, oL

so we have the following corollary:

R(x) =

<

Corollary 12 Vk > 0, 30 < C = C(k) < oo, such that VQ € B(x, %), we have

R(Q) < CR(x).

Proof. Since r is the largest radius, such that R < r% in B(z,r), so there exists a
point Z in B(z,r) such that R(Z) = =, otherwise 7 could be larger.

Now by the last theorem, take A = 4, there exists a constant A = A(k,4) < oo,
such that R < 4 in B(z,4r). Notice because d(z,Z) < r, so B(Z,3r) C B(x,4r).
The aboves are true at time 7', now we need to think a little bit backward. Since we
have positive curvature, keep in mind that the distance is shrinking.

We can find 6 > 0 small enough, such that for T — 6r* <t < T, B(Z,2r,t) C
B(Z,2r,T). On the other hand, we can also find § > 0 small enough, such that if

T —6r* <t <T,then d(Z,x,t) < 2r.
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In fact, we know the first one is always true, so we only need to choose § satisfies
the second one.

Now we use W.X.Shi's derivative estimate, which gives bound on |DR|, |D?R]

and |DyR| in B(Z,2r,T — 16r* <t < T), so we have

(In fact, |[DR| < C1/r®, |D*R|,|D;R| < 7).
Let’s pick a geodesic from X to Z at time (7' — %(57"2), this is the largest geodesic

between X and Z for all ¢t € [T — 212 T|. At time ¢ = T, the length of this geodesic

is less than r.

We can parametrize it by the arc length s at time T. So

| lier =1,0< s <5<d(z,2,T) <r.

Now we take the path in space-time:
1 5,1
Y(s), T — =6r* + =(=0r?
V()T — 507 + 2(500%)

We have |25 ], < 2 for all ¢ € [T'— L6r2,T).

This is because we have bounded curvature, so length does not change too much,
we can make ¢ smaller if needed. Since the curvature operator is positive, we have

Harnack inequality:

OR 2 212
“_~>9R"YDR.DR) > =|DR|? > —_|DR/?
o = 2R (DR, DR) = ~|DR* > —-|DF|
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76
(RCZO,RCSRg,R(le% Vand R < A/r?)
This is the true for any (p,t) in B(z, 4r) x [T — 26r*, T]. Now along the space-time
path:
dR OR dY ds
% pr()E . 2
i ot TPEY)I g
or? 2r
22— |IDR(Y )I> = |DR(Y)| -2 52
141
rt 2 52
Here we use
F=T— L5 2+S(16 2)
N 2 52
a 1_.,,  or?
Fr AT
ds _ 85 _ 2
dt  or2 — or?
Or we can write
dR _ 2 2 2
W2 pre—pRl-2- 2> -2 1p
dt R| | | - or — 6% r?
1, 21,1, 1
InR(x,t) — InR(Z, T — 557" ) > _ﬁﬁ(Q re) = 5
So R(z,T) > R(Z,T — 16r%) - e75 > Jyes.

Take a = %e‘

q.e.d.

%, this finishes the proof of the theorem.



3. ANALYSIS OF ANCIENT SOLUTIONS 7

Remark. Without the assumption of K-non-collapse, this theorem is not true. For
example, look at cigar.
Suppose it is true, since R(x) = e~* (assume M = 1), \/R(z) = e/ sor =

VaR(x) = Jae™*.
NG

Nowat s —r=s5— Y.
e—s/2

_[g—_Va B . )
R(Y) = 67[377“] —=e [ E—5/2] —e 5. 6\/56 /2 _ R(x)e\/ae /2

. R(Y .
If there exists such a, then ﬁ — 00 as s — 00. One reason is that DR = % =
e, 50 PEE — 5, o0 as s — o0
, =

R3
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