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Preface

This lecture note is based on Professor Richard Hamilton’s lectures given at

Columbia University when I was a Ritt Assistant Professor during 2002-2006. It

is also based on my understanding to geometric evolution equations.

The goal for this lecture note is to keep writing of Professor Hamilton’s lecture

notes, especially for those parts which hadn’t appeared elsewhere before. I apol-

ogize for not listing out all the references. The reader should check those recent

papers/books for detailed reference.

And at last, this note is far from complete and is always under updating.
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Chapter 1

Background on Ricci Flows

The structure of this chapter is organized as follows. In Section 1, we introduced

un-normalized and normalized Ricci flow equations. Short-time existence was proved

in Section 2. Some evolution equations for curvatures was derived in Section 3. In

Section 4, a property of long time existence was discussed.

1 Ricci Flow Equation

Let (M, g) be a compact Riemannian manifold. We try to improve a Riemannian

metric g(X, Y ) by evolving it by its Ricci curvature Rc(X, Y ). A family of Riemannian

metric g(t), t ∈ [0, T ), where T ∈ (0,∞], is called a solution to the Ricci flow if

∂

∂t
g(x, t) = −2Rc(x, t) (1.1)

at all points x ∈ M and time t ∈ [0, t). In other words, for any tangent vectors X

and Y at x we have:

∂

∂t
g(X,Y )(x, t) = −2Rc(X,Y )(x, t) (1.2)

7



8 CHAPTER 1. BACKGROUND ON RICCI FLOWS

for all points x ∈ M and time t ∈ [0, t). This is a second-order weakly parabolic

system. We usually write the equation in the component form

∂

∂t
gij = −2Rij (1.3)

Since the Ricci flow equation does not preserve the volume, we often consider the

normalized Ricci flow defined by

∂

∂t
gij = −2Rij +

2

n
rgij (1.4)

where

r =

∫
RdV∫
dV

is the average scalar curvature.

2 Short Time Existence and Modified Ricci Flow

Since the Ricci flow equation is only weakly parabolic, so the first question is that of

short-time existence. In [2], Hamilton proved that on a compact manifold, a solution

exists for short time for any smooth initial metric, which made the study of Ricci flow

possible. The proof was simplified by D. DeTurck[1] later.

Proposition 1 (Hamilton) Given any smooth, compact Riemannian manifold (M, g0),

there exists a unique solution g(t) to the Ricci flow with initial condition g(0) = g0

on some time interval [0, ε).

DeTurck’s idea is to modify the Ricci flow by a diffeomorphism induced by a time-

dependent vector field V. First we have the following lemma:
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Lemma 1 Let v(y, t) (y ∈ M , t ∈ R+) be a time-varying vector field on M . Then

for small t, there exists a unique family of diffeomorphisms ϕt : M → M such that

∂

∂t
ϕt(x) = v(ϕt(x), t) (2.1)

for all x ∈ M and with ϕ0 = identity

The standard proof when v does not depend on t still applies, via the existence and

uniqueness theorem for ordinary differential equations.

For any tensor T , the time differential of T under the diffeomorphism is equal to

LvT , for the metric tensor g, we have

(Lvg)ij = gikDjv
k + gjkDiv

k

for a vector field v = vk ∂
∂xk .

Consider the modified flow

∂

∂t
gij = −2Rij + gikDjv

k + gjkDiv
k

we want to choose vk such that the equation is strictly parabolic.

2.1 Symbol

We can view symbol Σ(ζ) as a quadratic function on cotangent space ζ = ϑidxi. For

∂

∂t
u = aij ∂2u

∂xi∂xj
+ bi

∂u

∂xi
+ c

the symbol Σ(ζ) = aijζiζj We say that the partial differential equation is strictly

parabolic if the symbol Σ(ζ) is positive definite, i.e., the matrix (aij) is positive
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definite.

In the case of constant coefficient case, under the space Fourier transformation for

û(ζ), we have

∂

∂t
û(ζ) = −aijζiζjû(ζ) +

√−1biζiû(ζ) + cû(ζ)

When the symbol is positive definite, the high frequences decays rapidly when ζ

become large.

2.2 Quasi-linear

If the symbol of the partial differential equation

∂

∂t
u = aij(x, t, u,

∂u

∂xk
)

∂2u

∂xi∂xj
+ b(x, t, u,

∂u

∂xk
)

is positive for all ζ 6= 0, we say the partial differential equation is quasi-linear. The

following theorem says that if the symbol is positive for initial data u(0) then the

quasi-linear partial differential equation has a short time solution.

2.3 Quasi-linear System

The Ricci flow equation is quasi-linear, the coefficient of ∂2gkl

∂xi∂xj is linear while the

coefficient of
∂gjk

∂xj is quadratic. So now let’s compute the symbol of Rik = gjlRijkl =

gjlgkpR
k
ijl in the following, we will omit the lower order by using · · · and only write

those leading terms.

Rik = gjlgkp{ ∂

∂xi
Γk

jl−
∂

∂xij
Γk

il+· · · } = gjlgkp{ ∂

∂xi
[
1

2
gpq(glq,j+gjq,l−gjl,q)]−sym(i, j)+· · · }
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We can simplify this to

1

2
gjl{[gjk,il − gjl,ik]− sym(i, j) + . . .}

So we have

∂

∂t
gik = gjl(gik,jl − gjk,il − gil,jk + gjl,ik) + · · ·

De Turk’s trick is to add Lvg to the right hand side and make the modified flow

equation a strictly parabolic one.

Lemma 2 Let gij(y, t) (y ∈ M , t ∈ R+) be a time-varying Riemannian metric on

M , and ϕt the family of diffeomorphisms from above. Then

∂

∂t
ϕ∗t (g)(x) = ϕ∗t [

∂

∂t
g(ϕt(x))] + 2ϕ∗t [δ

∗ω(ϕt(x))] (2.2)

where ω is the one-form ωi = gikv
k.

The proof is by direct computation. So (1.3) has a solution. This solution is also

unique(see [2] or [4]).

3 Evolution of Curvature

When the Riemannian metric evolves, so does its curvature. Under the un-normalized

Ricci flow, Hamilton[2] has proved that the curvatures evolve as follows:

Proposition 2 Under un-normalized Ricci flow equation, the curvature tensor Rijkl(t),

the Ricci curvature tensor Rij(t) and the scalar curvature R(t) satisfy the following
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evolution equations

∂

∂t
Rijkl =4Rijkl + 2(Bijkl −Bijlk −Biljk + Bikjl)

− gpq(RpjklRqi + RipklRqj + RijplRqk + RijkpRql) (3.1)

∂

∂t
Rik =4Rik + 2gpagqbRpiqkRab − 2gpqRpiRqk (3.2)

∂

∂t
R =∆R + 2gijgklRikRjl (3.3)

The proof is by direct calculation (see [2]). Since the term gijgklRikRjl is just the

squared norm of the Ricci curvature, which is always positive, now by using the

maximal principle, we have:

Corollary 1 If the scalar curvature R ≥ C > 0 at time t = 0, then it remains so

under the Ricci flow.

This is an example of the Ricci flow ”prefers” positive curvature. A very important

question in the study of Ricci flow is: Which properties of curvature may be preserved

by Ricci flow equation?

A consequence result of the above is that the un-normalized Ricci flow (1.2) has

to end in finite time if the compact manifold has positive scalar curvature everywhere

at the initial time.

Corollary 2 If R(0) ≥ c > 0, then T ≤ n/2c, here T is the maximum existence time

of Ricci flow Eq.(1.3).

Proof. Set

f(x, t) = nc/(n− 2ct),

so

∂

∂t
f = 2f 2/n
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thus

∂

∂t
(R− f) ≥ 4(R− f) +

2

n
(R + f)(R− f)

since

|Rij − R

n
gij|2 ≥ 0

implies

gijgklRikRjl ≥ R2/n.

As

R− f ≥ 0

at t = 0, this property remains true under Ricci flow on [0, T ), but f(x, t) →∞ when

t → n/2c, so T ≤ n/2c. q.e.d.

4 Long Time Existence

On a compact manifold of any dimension with any given initial metric at t = 0, we

have

Proposition 3 (Hamilton) For any smooth initial metric on a compact manifold

there exists a maximal time T on which there is a unique smooth solution to the Ricci

flow for 0 ≤ t ≤ T . Either T = ∞ or else the curvature is unbounded as t → T .

Proof. We follow Hamilton’s proof in [2], the proof is by contradiction. Since we

already know short time existence and uniqueness, we can take the maximum time

interval 0 ≤ t < T on which the solution exists. We will show that if T < ∞ and

|Rm| ≤ C as t → T , then the metric gij converges as t → T to a limit metric (which

is strictly positive definite), and all the derivatives converge also, showing the limit
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metric is smooth. We could then use the short time existence result to continue the

solution past T , showing T is not maximal. The following 3 lemmas are needed for

the proof:

Lemma 3 Let gij be a time-dependent metric on M for 0 ≤ t < T ≤ ∞. Suppose

∫ T

t=0

max
M

|g′ij|dt ≤ C < ∞

then the metric gij(t) for all different time are equivalent, and they converge as t → T

uniformly to a positive-definite metric tensor gij(T ) which is continuous and also

equivalent.

Lemma 4 If |Rm| ≤ C on 0 ≤ t < T < ∞, then for any n we can find a constant

Cn with ∫

M

|∂nRm|2dµ ≤ Cn

Lemma 5 If |Rm| ≤ C0 on 0 ≤ t < T < ∞, then |∂nRm| ≤ Cn for all n. The

constant Cn depends only on the initial value of the metric and the constant C0.

The estimates on Rc = Rij follows from those on Rm. Since ∂
∂t

gij = −2Rij,

it’s easy to see that gij(t) have all their derivatives bounded, and converge to the

limit metric gij(T ) in the C∞ topology as t → T . This completes the proof of the

Proposition 3. q.e.d.

By using the derivative estimate in [4], Hamilton gives a similar proof for this

result.



Chapter 2

Soliton and Perelman’s Estimate

The structure of this chapter is organized as follows. In Section 1, we talk about

Ricci solitons. In section 2, we begin Perelman’s estimate. In section 3, we introduce

the logarithmic sobolev inequality. In section 4, we continue to introduce Perelman’s

W -functional. In section ??, we give a quick review of injectivity radius. In section 5,

we talk about the injectivity radius estimate. In section ??, we study the no breathers

theorem. In section ??, we study the no local collapsing theorem.

1 Soliton

Soliton Equation:

∂

∂t
gij = (Lvg)ij

If v = −Df , this is called gradient soliton. Under Ricci flow, we have the steady

gradient Ricci soliton equation:

Rij = D2
ijf

15
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Some calculation shows that

DiR + 2RijDjf = 0

Hence on the gradient soliton we have

Di(R + |Df |2) = DiR + 2RijDjf = 0

Lemma 6 On a steady gradient Ricci soliton,

R + |Df |2 = M

Here M is a space constant.

More calculation shows that

∂

∂t
(DiDjf) = 4(DiDjf) + 2RikjlDkDlf −RilDjDlf −RjlDiDlf

At the same time, we already have the evolution equation for Ricci curvature:

∂

∂t
Rij = 4Rij + 2RikjlRkl − 2RikRjk

Hence we have the following:

Lemma 7

DiDjf = Rij ⇔ DiDj(
∂

∂t
−4)f = 0

So on a gradient Ricci soliton,

∂

∂t
f = 4f + C(t)
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And later we will see that C(t) = −M .

Perelman introduced the following equation (not only on a soliton):

∂

∂t
f = −4f − |Df |2 + R

In fact, on a gradient Ricci soliton, R = 4f , so when C(t) = −M , the above two

equations are same.

2 Perelman’s Estimate I

Perelman adjoins function f as above to go with the Ricci flow equation to form a

system.





∂
∂t

gij = −2Rij

∂
∂t

f = −4f − |Df |2 + R

Suppose the Ricci flow exists for t ∈ [0, T ], then specify initial data for gij at t = 0

and final data for f at t = T .

Remark. 1) The time T here is strictly less the blow-up time we discussed before.

2) The Ricci flow equation is a forward ”heat” equation, and the equation about f is

a backward heat equation.

3) fmax decreases backward.

Lemma 8

d

dt

∫
efdV = 0

So if we define

W =

∫
(|Df |2 + R)efdV
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We have the following:

Lemma 9 (Perelman) Under Ricci flow, W is non-decreasing, in fact,

d

dt
W = 2

∫
|DiDjf −Rij|2efdV ≥ 0

Proof.

d

dt
W =

d

dt

∫
(gijDifDjf + R)efdV

=

∫
[2gikgjlRklDifDjf + 2gijDifDj(

∂

∂t
f) +4R

+ 2|Rij|2 + (|Df |2 + R)(
∂

∂t
f −R)]efdV

=

∫
[2(4f)2 + 34f |Df |2 + |Df |4 − 2R4f − 2R|Df |2

+ 2RijDifDjf + 2|Rij|2]efdV

q.e.d.

3 Logarithmic Sobolev Inequalities

∫

M

f 2 log fρdµ−
∫

M

f 2ρdµ log(

∫

M

f 2ρdµ)1/2 ≤
∫

M

(|∇Mf |2 + V f 2)ρdµ

Or in other form, ∫

M

f 2 log fdµ ≤
∫

M

|∇f |2dµ

Where dµ = (2π)−
n
2 e−

x2

2 dx and
∫

M
f 2dµ = 1.
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4 Perelman’s Estimate II

We now begin to deal with the shrinking case. (Shrinking soliton)

Choose any T > 0, look at 0 ≤ t < T < ∞. Define

W = (T − t)−
n
2

∫
[(T − t)(|Df |2 + R)− f ]efdV

and let’s change the evolution equation of f :

∂

∂t
f = −4f − |Df |2 + R− n

2(T − t)

then we have

(T − t)−n/2

∫
efdV = constant

Lemma 10

d

dt
W = 2(T − t)1−n/2

∫
|DiDjf −Rij +

1

2(T − t)
gij|2efdV

Remark. Here T is just a parameter, does not need to be the blow-up time. (If we

divide by T , we should get the first formula?)

Proof. In this proof, let’s put a ”¯” on f and W , because we want to use the formula

we derived before. And let f and W be as in section 2,

Let τ = T − t, f̄ = f + n
2

log τ , Y =
∫

fefdV , we have Df̄ = Df , and

τ−n/2

∫
ef̄dV =

∫
efdV = constant

∂

∂t
f̄ = −4f̄ − |Df̄ |2 + R− n

2(T − t)
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W̄ =τ

∫
(|Df |2 + R)efdV −

∫
(f +

n

2
log τ)efdV (4.1)

=τW − Y − n

2
log τ

∫
efdV (4.2)

We also need the following

d

dt
Y =

d

dt
(

∫
fefdV ) (4.3)

=

∫
[(f + 1)ef ∂

∂t
f −Rfef ]dV (4.4)

=

∫
{(f + 1)ef [−4f − |Df |2 + R]−Rfef}dV (4.5)

=

∫
fef (−4f − |Df |2)dV +

∫
ef (−4f − |Df |2 + R)dV (4.6)

=

∫
f(−4(ef ))dV +

∫
(−4(ef ) + Ref )dV (4.7)

=

∫
ef |Df |2dV +

∫
RefdV (4.8)

Here we have used

4ef = D(efDf) = ef (4f + |Df |2)

and integration by parts. We also have

∫
(4f)efdV = −

∫
|Df |2efdV
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Now we can compute d
dt

W̄ :

d

dt
W̄ =τ2

∫
|DiDjf −Rij|2efdV −

∫
(|Df |2 + R)efdV − d

dt
Y +

n

2τ

∫
efdV (4.9)

=2τ

∫
|DiDjf −Rij|2efdV − 2

∫
(|Df |2 + R)efdV +

n

2τ

∫
efdV (4.10)

=2τ

∫
|DiDjf −Rij|2efdV + 2

∫
(4f −R)efdV +

n

2τ

∫
efdV (4.11)

=2τ

∫
[|DiDjf −Rij|2 +

1

τ
(4f −R) +

n

4τ 2
]efdV (4.12)

=2τ

∫
|DiDjf −Rij +

1

2(T − t)
gij|2efdV (4.13)

q.e.d.

We now no longer keep the ”¯” on f and W .

Corollary 3 W is non-decreasing under the Ricci flow.

In next section, we want to estimate the lower bound on the injectivity radius.

5 Injectivity Radius Estimate

The reason we want the injectivity radius estimate is that if ρ ¿ 1√
Kmax

, then if we

choose the point where the injectivity radius is very small as the origin, dilate in

the space such that the injectivity radius keep fixed as 1, and take the limit as time

approach the blow-up time, then we will get a flat manifold with some little loop, i.e.,

Bn−1
r × S1

ε . Where Bn−1
r is the ball of radius r and S1

ε is the circle with radius ε.

Assume we have a ball of radius r around some point P , where |Rm| ≤ 1
r2 and

V (Br(P )) ≤ εrn, if ε is too small, we can conclude that W is very negative, this

contradicts the fact that W is bounded from below.
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First let us change the notation, let

ef = u2

i.e.

u = ef/2, f = 2 log u, Df = 2
Du

u

so

τ−n/2

∫
efdV = τ−n/2

∫
u2dV

and

W =τ−n/2

∫
[τ(|Df |2 + R)− f ]efdV (5.1)

=4τ−n/2

∫
[τ(|Du|2 +

1

4
Ru2)− 1

2
u2 log u]dV (5.2)



Chapter 3

Curvature pinching

The structure of this chapter is organized as follows. In Section 1, by using the

maximal principle for system, we can study the reaction ODE system instead of the

PDE system.. In section 2, we derive the pinching estimate for three-manifolds. In

section ??, we study when the curvature condition is preserved. In section 3, we

derive the pinching estimate for positive Ricci curvature. In section 4, we study the

general curvature pinching condition.

1 Maximal Principle for System

Maximal principle proved to be a useful tool in Ricci flow. We need to establish the

following:

Proposition 4 (Hamilton) If a tensor F evolves by a diffusion-reaction equation

∂

∂t
F = 4F + Φ(F ) (1.1)

23
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and if Z is a closed subset of the tensor bundle which is invariant under parallel trans-

lation and such that its intersection with each fibre is convex, and if Z is preserved

by the system of ordinary equations in each fibre given by the reaction

d

dt
F = Φ(F ) (1.2)

then Z is also preserved by the diffusion-reaction equation, in the sense that if the

tensor lies in Z at each point at the start, then it continues to lie in Z subsequently.

For preserving curvature inequality in the Ricci flow we take Z to be a subset of the

bundle of curvature operators M which is convex in each fibre, and check that Z is

preserved by the curvature reaction

d

dt
M = M2 + M# (1.3)

Proof. See [3] q.e.d.

The importance of above Proposition is that it allows us to study the reaction

ODE system instead of the PDE system.

2 Pinching Estimates for 3-manifolds

Let’s consider the Einstein tensor Eij = 1
2
Rgij − Rij. Eigenvalues of Eij are princi-

pal sectional curvature. In an orthonormal frame {F1, F2, F3} which diagonalize the

matrix Eij , E11 is the sectional curvature of the plane spanned by {F2, F3}, i.e.,

E11 = R2323. If we pick an orientation which gives the volume form uijk, then

Rijkl = Epqg
prgqsuijrukls
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We also know that in the orthonormal frame, Rij is also diagonal. Hence if we have

Eij =




λ 0 0

0 µ 0

0 0 ν




Rij =




µ + ν 0 0

0 λ + ν 0

0 0 λ + µ




and finally, R = 2(λ + µ + ν) is the scalar curvature.

Now let’s consider the evolving orthonormal frame defined as before

Fa = F i
a

∂

∂xi

∂

∂t
F i

a = gijRjkF
k
a

And the pull back metric gab = gijF
i
aF

j
b is constant in time. We have

∂

∂t
Eab = 4Eab + 2(E2

ab + E#
ab)

if

Eab =




λ 0 0

0 µ 0

0 0 ν




then
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E2
ab =




λ2 0 0

0 µ2 0

0 0 ν2




and

E#
ab =




µν 0 0

0 λν 0

0 0 λµ




The equation

d

dt
Eab = 2(E2

ab + E#
ab)

gives us a system of ODEs on 6-dimensional space of symmetric matrices. And we

are looking for convex set Z ⊆ R6 preserved by ODE, and hence by the PDE.

Remark. 1) Since we define the convex set Z by the eigenvalues of matrix (or any

other tensors), it will be invariant under parallel translation, so we only need to verify

it’s convex and preserved by the ODEs.

2) The ODEs preserve the diagonal form, so we only need to consider on the subset

of diagonal matrices.

And now the reaction equation for Eab (in the space of symmetric 3× 3 matrices)

descends to the reaction on the diagonal terms (α, β, γ) in R3 given by the system of

ODE:
1
2

d
dt

λ = λ2 + µν

1
2

d
dt

µ = µ2 + λν

1
2

d
dt

ν = ν2 + λµ

Let’s assume that λ ≥ µ ≥ ν, and this order is preserved by ODE. We have the
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following:

Lemma 11 The functions λ, λ + µ, λ + µ + ν are convex functions. The functions

ν, µ + ν, λ + µ + ν are concave functions.

3 Pinching Estimate for Positive Ricci Curvature

Assume that M3 is compact with Ric > 0, that means

µ + ν > 0

on M. So

µ + ν ≥ ε > 0

for some ε > 0 at t = 0.

Let’s define the pinching set

Z = {Eab : λ− ν ≤ A(µ + ν)1−δ and λ + µ ≤ B(µ + ν)}

for some constants A and B we will choose below, we can always choose A, δ and B

such that this is true for any initial metric on compact 3-manifolds with positive Ricci

curvature, then for the fixed δ, we can choose A < ∞ such that this holds everywhere

and at any time t > 0.

Proposition 5 On a compact 3-manifold with positive Ricci curvature, we have

λ− ν ≤ A(µ + ν)1−δ
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for some constants A and δ, hence if λ is very big, then

λ− ν

λ
¿ 1

Now the following

Lemma 12 If Rij = fgij for some scalar function f and dimension is larger than 2,

then f must be a constant. (For example, see Gallot, P. 109.)

says that around where λ (or R) is very big, it must be constant curvature. Notice

the lemma is a local argument. Now by using the derivative estimate on curvature, the

curvature can’t fall off rapidly, and by the continuity argument, it must be constant

curvature everywhere. (? but that’s on limit, before limit, why is it even true for

locally to be a constant? Now on the limit, it’s constant, so before the limit, it’s

almost constant in a small neighborhood, then apply the derivative estimate and

using the continuity argument.)

4 General Curvature Pinching Condition

Conjecture 1 For n > 4, there exists ε > 0 such that

Rijklϕijϕkl ≥ εR|ϕ|2

is preserved by the Ricci flow.

Conjecture 2 The positive Ricci curvature is preserved by the Kähler−Ricci flow.

Remark. Because of Perelman’s estimate, the type I singularity of Kähler −Ricci-

flow must be compact. (Injectivity radius and volume estimate lead to the bound on

the diameter.)



Chapter 4

Ricci Soliton

The structure of this chapter is organized as follows. In Section 1, we talk about

maximal principle. In section 2, we present some Harnack inequalities. In section 3,

we study gradient Ricci soliton. In section 4, we study eternal solutions.

1 Strong Maximal Principle

Theorem 1 If

∂

∂t
f ≥ 4f (1.1)

on Mn (need not to be complete) for 0 ≤ t ≤ T , if

f ≥ 0

everywhere and

f(P, 0) > 0

for some point P , then

f(Q, t) > 0

29
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for all Q and t > 0.

2 Harnack Inequality

If a solution to a parabolic partial differential equation is positive in some sense, then

we can try to derive so called ”Harnack Inequality (Estimate)”, in the form of

∂

∂t
Max ≥ −c

where −c is any lower bound.

Example.

f(x, t) = ce−n2t sin(nx)

is a solution of

∂

∂t
f =

∂2f

∂x2

fmax = ce−n2t

d

dt
fmax = −n2fmax

Example.

f =
c√
t
e−

x2

4t

is a positive solution of the equation

∂

∂t
f =

∂2f

∂x2

fmax =
c√
t
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d

dt
fmax = − c

2t3/2
= −fmax

2t

Corollary 4 Any non-negative solution of

∂

∂t
f =

∂2f

∂x2

satisfies the following inequality:

∂

∂t
fmax ≥ −fmax

2t

for t ≥ 0.

Theorem 2 If f is any positive solution of

∂

∂t
f =

∂2f

∂x2

then

∂

∂t
f +

1

2t
f ≥ 1

f
(

∂

∂x
f)2

Proof. Let

h =
∂

∂t
f +

1

2t
f − 1

f
(

∂

∂x
f)2

q.e.d.

For curve-shrinking flow, we have

∂

∂t
k +

1

2t
k ≥ 1

k
(
∂k

∂s
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For Ricci flow, we have

∂

∂t
R +

1

t
R ≥ 1

R
|DR|2

For mean curvature flow, see

For gauss curvature flow, see Chow.

For Yamabe flow, see Chow.

Theorem 3 Suppose we have non-negative curvature operator, then

∂

∂t
R +

1

t
R ≥ R−1

ij DiRDjR

3 Gradient Ricci Soliton

In chapter ??, we know that a steady gradient Ricci Soliton satisfies:

DiDjf = Rij (3.1)

while the expanding gradient Ricci Soliton satisfies:

DiDjf = Rij + rgij

Remark. If r < 0, it’s shrinking, if r > 0, it’s expanding.

Question: Are all solitons gradient?

Answer: See Perelman [5].

Let us look at steady soliton, if we take derivative and anti-symmetry, we have
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DiRjk −DjRik =DiDjDkf −DjDiDkf

=RijklDlf (3.2)

On soliton, let us define

Pijk = DiRjk −DjRik = RijklDlf

contract (j, k) we have

DiR− 1

2
DiR = −RilDlf

or

DiR + 2RijDjf = 0 (3.3)

Now on a soliton,

Di(R + |Df |2) = DiR + 2DjfDiDjf = DiR + 2Djf ·Rij = 0

Hence R + |Df |2 = M is a constant on soliton. This is Lemma 6 in Chapter ??.

For Kähler-Ricci flow, pick f, such that

DαDβ̃f = Rαβ̃

and

DαDβf = 0 ≡ Rαβ
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For mean curvature flow:

H2 + |Df |2 = constant

However, there is no equality known for Yamabe flow.

Now, we take another derivative on both sides of Eq 3.2:

DiDjRkl −DiDkRjl = DiRjklmDmf + RjklmDiDmf

= DiRjklmDmf + RjklmRim (3.4)

Contract (i,j)

4Rkl −DiDkRil = DiRiklmDmf + RimRiklm (3.5)

while

DiDkRil = DkDiRil + RikimRlm + RiklmRim

= 1
2
DkDiR + RkmRlm −RkilmRim

and

DiRiklm = DiRlmik

= −DlRmiik −DmRilik

= DlRmk −DmRlk

The second equality is by 2nd Bianchi identity. So Eq. 3.4 becomes:
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4Rkl − 1

2
DkDlR + 2RmnRkmln −RkmRlm

= (DlRmk −DmRlkDmf (3.6)

Define

Mkl = 4Rkl − 1

2
DkDlR + 2RmnRkmln −RkmRlm

Then on a soliton

Mkl = PlmkDmf

Since Plmk = −Pmlk, Mkl + PmlkDmf = 0, we also have

PmlkDmf + RkmlnDmfDnf = 0

so on a soliton

Mkl + 2PmlkDmf + RkmlnDmfDnf = 0 (3.7)

For any one-form W,

MklWkWl + 2PmlkWkWl + RkmlnDmfDnfWkWl = 0 (3.8)

If we anti-symmetrize, let Ukm = 1
2
(WkDmf −WmDkf) then

MklWkWl + 2PmlkUmlWk + RkmlnUkmUln = 0 (3.9)

we can prove the following theorem:

Theorem 4 Given solution to the Ricci Flow, complete with bounded curvature, and
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with positive curvature operator, i.e.,

RabcdUabUcd ≥ 0

for all 2 forms Uab. If it’s an expanding soliton:

Rij = DiDjf +
c

t
gij

Then:

Z = (Mab +
1

2t
RabWaWb + 2PabcUabWc + RabcdUabUcd ≥ 0

for all Wa, Uab on soliton: U = W ∧Df . W and U on soliton has special relation.

Proof. Z > 0, small t > 0. maximal principal.

if Z = 0 somewhere, find first time t, point p, W, U where z = 0. extend W, U

to no bound. at point p,





DaUbc = 1
2
(RabWc −RacWb) + 1

4t
(gabWc − gacWb

DaWb = 0

(Dt −4)Wa =
1

t
Wa, (Dt −4)Uab = 0

(only at p, require anti-symmetric of b and c)

(Dt −4)Z =(PabcWc + RabcdUcd)(PabeWe + RabefWeWf )

+2RabcdMcdWaWb − 2PacdWaWb + 8RabcePdbeUabWc

+4RaecfRbedfUabUcd ≥ 0
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at non-vector.

Write

Z =
∑

µ

λµ[(Vµ, U) + (Xµ,W )]2

then

(Dt −4)Z =|
∑

µ

λµ((Vµ, U) + (Xµ,W ))Vm|2

+
∑
µ,N

λMλN([VM , VN ], ν)2

+
∑
M,N

(VMyXN − VNyXM ,W )2

≥0

q.e.d.





M : X ×X

P : X × V

Rabcd : V × V

Trace Z, write Uab = 1
2
(−WaVb + WbVa) = V ∧W , Z = quadratic in W in each V.

trace W,
∑

orthonormal basis of W’s.

Mab =4Rab − 1

2
DaDbR

+2RacbdRcd −RacRbc +
1

2t
RabWaWb

trace = 4R− 1
2
4R + RcdRcd + 1

2t
R
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trace M = 1
2
4R + |RiC |2 + 1

2t
R,

PabcUabWc = (DaRbc −DbRac)VaWbWc = +
1

2
DbR · Vb

trace RabcdVaWbVcWd = RacVaVc,

1

2t
R + |Ric|2 + +

1

2
4R + DaRVa + RabVaVb ≥ 0

all V.

1

2t
R + |Ric|2 + 2DaRVa + 2RabVaVb ≥ 0

∂

∂t
Rt +

1

2t
R + 2DaRVa + 2R + abVaVb ≥ 0

all V.

infv:

DaR + 2RabVb = 0

Vb = −1

2
R−1

ab DaR

Hence

∂

∂t
Rt +

1

t
R ≥ 1

2
R−1

ab DaRDbR

when n = 2, Rab = 1
2
Rgab, so R−1

ab = 2 1
R
g−1

ab

This is the trace form of Harnack Inequality.

Conjecture 3 Is the Harnack Inequality true for Ric > 0 in dim 3?

Remark. Positive Sectional curvature =⇒ Positive Ricci curvature.

In Kähler case, if the manifold has positive holomorphic bisectional curvature (which
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is preserved by Ricci flow), i.e.,

Rαβ̄z̄δ̄W
αZ β̄W z̄Zδ ≥ 0, ∀W,Z.

Mαβ̄ =
1

2
4Rαβ̄

DαRβz̄ = DβRαz̄

DαDβ̄ =DαDβ̄Rzz̄

=DαDz̄Rzβ̄

=DζDz̄Rαβ̄

=4Rαβ̄

Hence the Harnack Inequality is:

∂

∂t
Rαβ̄t + ≥ 0

4 Eternal Solutions

Eternal Solution with bounded curvature are important because they occur as models

of slowly forming singularities.

Theorem 5 Suppose we have a complete solution with bounded curvature to the Ricci

flow with (weakly) positive curvature operator for all time, −∞ < t < ∞, and suppose

R attains its max at some point p, for time t. Then the solution is a Ricci gradient

soliton, i.e., ∃f with Rij = DiDjf .
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In dimension 3, if we have a type 2 solution, then the limit satisfies −∞ < t < ∞,

R(0, 0) = 1, R(x, t) < 1 and Rm ≥ 0 by the pinching estimate.

Corollary 5 In dimension 3, any type 2 blow up must be a soliton.

This is also true for dimension 4 when the metric has positive isotropic curvature.

Notice if the solution is ancient (or etenal), then the 1
t

term in the Harnack

inequality will drop, because we can start at any negative time −c and that term will

become 1
t+c

, let c− >→∞. Hence the Harnack inequality for ancient solution is

∂

∂t
R + 2DaRVa + 2RabVaVb ≥ 0

Corollary 6 On ancient solution with non-negative curvature operator, R increases

everywhere.

Proof. ∂
∂t

R ≥ 1
2
R−1

ab DaRDbR > 0 q.e.d.



Chapter 5

The L-function and Harnack

Estimate

The structure of this chapter is organized as follows. In Section 1, we talk about

Perelman’s L-function. In section 2, we present Li-Yau’s Harnack estimate. In section

3, we derive Perelman’s Harnack inequality in a different way.

1 the L-function

Suppose we have a solution to the Ricci flow

∂

∂t
gij = −2Rij

on M for 0 ≤ t ≤ T .

Let τ = T − t, ∂
∂τ

= − ∂
∂t

. In space-time,

Define

L(γ) =

∫ τ2

τ1

√
τ(R + gij

dxi

dτ
· dxj

dτ
)dτ

41



42 CHAPTER 5. THE L-FUNCTION AND HARNACK ESTIMATE

L((P, τ1), (Q, τ2)) = infγL(γ)

Let us take a 1-parameter family of paths, with parameter u. i.e.,

xi =xi(τ, u)

X i =
∂

∂τ
xi

Y i =
∂

∂u
xi

X,Y on the tangent space are space like.

along path

d

dτ
=

∂

∂τ
+

∂xi

∂τ
· ∂

∂xi

In the following, we will compute DiL,DiDjL and then trace of D2L = 4L

DτX =(
∂2xi

∂τ 2
+ Γi

jk

∂xj

∂τ

∂xk

∂τ
)

∂

∂xi

DτY =(
∂2xi

∂τ∂u
+ Γi

jk

∂xj

∂τ

∂xk

∂u
)

∂

∂xi

Let L = L(u) =
∫ τ2

τ1

√
τ(R + gij

∂xi

∂τ
∂xj

∂τ
)dτ

dL
du

=

∫ τ2

τ1

√
τ(

∂R

∂xk

∂xk

∂u
+ 2gij

∂2xi

∂τ∂u
· ∂xj

∂τ
+

∂gij

∂xk

∂xk

∂u

∂xi

∂τ

∂xj

∂τ
)dτ (1.1)

If we fix the end points

0 =
√

τgij
∂xi

∂u

∂xj

∂τ
|τ2
τ1=

∫ τ2

τ1

d

dτ
(
√

τ(gij
∂xi

∂u

∂xj

∂τ
))dτ

=

∫ τ2

τ1

√
τ(gij

∂2xi

∂τ∂u

∂xj

∂τ
+ gij

∂xi

∂u

∂2xj

∂τ 2
+ 2Rij

∂xi

∂u

∂xj

∂τ

+
∂gij

∂xk

∂xk

∂τ

∂xi

∂u

∂xj

∂τ
+

1

2τ
gij

∂xi

∂u

∂xj

∂τ
)dτ (1.2)
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Here, we assumed the following: xi(τ1, u) = pi and xi(τ2, u) = qi or ∂xi

∂u
= 0 at

τ1,τ2.

Otherwise, we will have a boundary term:

2
√

τ̄ < X, Y >

If Y 6= 0 at τ2 = τ̄ , i.e., we only fix the initial point.

( 1.1)− 2( 1.2), we have

dL
du

=

∫ τ2

τ1

√
τ
∂xk

∂u
[
∂R

∂xk
− 2gkj(

∂2xj

∂τ 2
+ Γj

il

∂xi

∂τ

∂xl

∂τ
)− 4Rjk

∂xj

∂τ
− 1

∂τ
gjk

∂xj

∂τ
]dτ (1.3)

The advantage of local coordinates is ∂
∂xi ,

∂
∂τ

, ∂
∂u

just act as ordinary derivative, but

we need to keep in mind that for the result we need to put into a form tensor-like, so

that the result is coordinate independent.

And we can rewrite (3) as

dL
du

= −
∫ τ2

τ1

2
√

τ
∂xk

∂u
gjk[(

∂2xj

∂τ 2
+ Γj

il

∂xi

∂τ

∂xl

∂τ
) + 2gklRlm

∂xm

∂τ
− 1

2
gjlDlR +

1

∂τ

∂xj

∂τ
]dτ

(1.4)

when it is a minimal path dL
du

= 0 for all ∂xk

∂u
= 0 at τ1,τ2.

So we have the following lemma:

Lemma 13 The equation for L-minimizing path is

∂2xj

∂τ 2
+ Γj

il

∂xi

∂τ

∂xl

∂τ
+ 2gjlRlm

∂xm

∂τ
− 1

2
gjlDlR +

1

2τ

∂xj

∂τ
= 0 (1.5)

From now on, we ignore all Γ’s or ∂
∂x

g.
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Next we compute the second variation formula for L:

d2L
du2

=

∫ τ2

τ1

√
τ(

∂2R

∂xk∂xl
· ∂xk

∂u
· ∂xl

∂u
+

∂R

∂xk

∂2xk

∂u2
+ 2gij

∂3xi

∂τ∂u2

∂xj

∂τ

+2gij
∂2xi

∂τ∂u

∂2xj

∂τ∂u
+

∂2gij

∂xk∂xi
· ∂xk

∂u

∂xl

∂u

∂xi

∂τ

∂xj

∂τ
)dτ (1.6)

Now we only fix the start point. Let τ1 = 0, τ2 = τ̄ .

2
√

τ̄ < DY Y,X >|end=

∫ τ̄

0

d

dτ
{2√τgij(

∂2xi

∂u2
+ Γi

kl

∂xk

∂u

∂xl

∂u
)
∂xj

∂τ
}

=

∫ τ̄

0

{2√τgij
∂3xi

∂τ∂u2

∂xj

∂τ
+ 2

√
τ(

∂

∂xk
Rjl +

∂

∂xl
Rjk − ∂

∂xj
Rkl)

∂xk

∂u

∂xl

∂u

∂xj

∂u

+2
√

τgij(
∂

∂xm
Γi

kl)
∂xm

∂τ

∂xk

∂u

∂xl

∂u

∂xj

∂τ
+ 2

√
τgij

∂2xi

∂u2

∂2xi

∂τ 2

+4
√

τRij
∂2xi

∂u2
+

1√
τ
gij

∂2xi

∂u2

∂xj

∂τ
}dτ

Here we used

d

dτ
Γi

kl =
∂

∂τ
Γi

kl +
∂

∂xm
Γi

kl ·
∂xm

∂τ

and

∂

∂τ
Γi

kl =
∂

∂τ
{1

2
gij{ ∂

∂xk
gil +

∂

∂xl
gjk − ∂

∂xj
glk}}

=gij{ ∂

∂xk
Rjl +

∂

∂xl
Rjk − ∂

∂xj
Rlk}

so

d2L
du2

= 2
√

τ̄ < DY Y, X > +

∫ τ̄

0

[DkDlRY kY l + 2gij
∂2xj

∂τ∂u
· ∂2xj

∂τ∂u
]+

√
τ̄{− ∂2

∂xk∂xm
gjl − ∂2

∂xm∂xl
gjk +

∂2

∂xm∂xj
gkl +

∂2

∂xk∂xl
}∂xj

∂τ

∂xm

∂τ

∂xk

∂u

∂xl

∂u
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Now let us choose Y = {∂xi

∂u
} to solve the first order ODE on [0, τ̄ ]:

∂2xi

∂τ∂u
+ Γi

jk

∂xj

∂τ

∂xk

∂u
+ gijRjk

∂xk

∂u
− 1

2τ

∂xj

∂u
= 0

Lemma 14 If Y solve the above ODE and |Y (τ̄)| = 1, then |Y |2 = τ
τ̄
.

Proof.

d

dτ
|Y |2 =

d

dτ
{gij

∂xi

∂u

∂xj

∂u
}

=2gij
∂2xi

∂τ∂u

∂xj

∂u
+ 2Rij

∂xi

∂u

∂xj

∂u

=
1

τ
gij

∂xi

∂u

∂xj

∂u
=

1

τ
|Y |2

so: d
dτ

( |Y |
2

τ
) = 0. Hence |Y |2 = τ

τ̄
. q.e.d.

Remark. we can see from above that Y → 0 as τ → 0.

So we have

HessL(Y, Y ) =
d2L
du2

− 2
√

τ̄ < DY Y,X >

=
1√
τ̄
− 2

√
τ̄Ric(Y, Y )−

∫ τ̄

0

√
τH(X,Y )dτ

Here

H(X, Y ) = 2[MijY
iY j − PijkY

iXjY k + RijklX
iXjXkX l]

Mij = 4Rij − 1

2
DiDjR + 2RikjlRkl −RikRjk − 1

2τ
Rij

Pijk = DiRjk −DjRik
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Since we have fixed the start point P , τ1 = 0. Let

L(Q, τ̄) = infγL((P, 0), (Q, τ̄))

We first verify that for a gradient shrinking soliton, if a point flow along Df , then

the result path is the ”L-geodesic”. Since

Rij = −DiDjf +
1

2τ
gij

“L-geodesic” attains minL solves the second order ODE:

(
d2xi

dτ 2
+ Γi

jk

dxj

dτ

dxk

dτ
)− 1

2
gijDjR +

1

2τ

dxi

dτ
+ 2gijRjk

dxk

dτ
= 0

dxi

dτ
=

∂xi

∂τ
= gijDjf

∂f

∂τ
= −gijDifDjf

df

dτ
=

∂f

∂τ
+

∂f

∂xi
· dxi

dτ
= 0

DhRij −DiRhj = −Rhijkg
klDlf

trace by gij:

DhR− 1

2
DhR = Rhkg

klDlf

i.e., DhR = 2Rhkg
klDlf .

So,
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d2xi

dτ 2
+ Γi

jk

dxj

dτ
· dxk

dτ
=

d

dτ
(gijDjf) + Γi

jk

dxj

dτ
· dxk

dτ

=
∂

∂τ
(gijDjf) +

∂

∂xk
(gijDjf) · ∂xk

∂τ

= −2gilRlkg
kjDjf + gijDj[−gklDkfDlf ] + gij ∂2f

∂xk∂xj

∂xk

∂τ

= −2gijRjk
dxk

dτ
− 2gijgklDjDkf ·Dlf + gij ∂2f

∂xk∂xj

∂xk

∂τ

(again, we ignore Γ′s in calculation)

So

d2xi

dτ 2
+ Γi

jk

dxj

dτ
· dxk

dτ
− 1

2
gijDjR +

1

2τ

dxi

dτ
+ 2gijRjk

dxk

dτ

= −2gijRjk
dxk

dτ
− 2gijgklDjDkf ·Dlf + gij ∂2f

∂xk∂xj

∂xk

∂τ

− 1

2
gijDjR +

1

2τ
· gijDjf + 2gijRjk

dxk

dτ

= −2gijRjk
dxk

dτ
− 2gijgkl(−Rjk +

1

2τ
gjk)Dlf

+ gij(−Rkj +
1

2τ
gkj)

∂xk

∂τ
− 1

2
gijDjR +

1

2τ
gijDjf + 2gijRjk

dxk

dτ

= 2gijgklRjkDlf − gijRkj
∂xk

∂τ
− 1

2
gijDjR

= 2gijRjkDlf − gijRkjDkf − gijRjkDkf

= 0

We used DhR = 2Rhkg
klDlf in the last step. So we have proved the following:

Corollary 7 The gradient flow of f actually is a L-geodesic.

Remark. For those who are more familiar with Hamilton’s notation, this might be



48 CHAPTER 5. THE L-FUNCTION AND HARNACK ESTIMATE

a little confusing, but always remember that Perelman’s potential function is the

negative of Hamilton’s.

2 Li-Yau’s Harnack Estimate

Let us first recall Li-Yau’s Harnack Estimate: Let u > 0 be a solution of the heat

equation.

ut = uxx

take u = 1√
4πt

e−x2/4t be the fundamental solution.

Let F = x2

4t
, so u = 1

(4πt)1/2 e
−F

∂u

∂t
=

1

(4πt)1/2
e−F [−∂F

∂t
− 1

∂t
]

uxx =
1

(4πt)1/2
e−F [−Fxx + |DF |2]

so

∂F

∂t
= Fxx − |DF |2]− 1

2t
.

Let H = Fxx − 1
2t

. This is our Harnack quantity. Harnack vanishes on Founda-

mental solution. Since

Fxx =
1

2t
.

We have

Ht = Fxxt +
1

2t2
= (Fxx − |DF |2 − 1

2t
)xx +

1

2t2
= Fxxxx − 2FxFxxx − 2F 2

xx +
1

2t2
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Hx = Fxxx

Hxx = Fxxxx

so

Ht = Hxx − 2Fx ·Hx − 2(H +
1

2t
)2 +

1

2t2

i.e.

Ht = Hxx − 2Fx ·Hx − 2H2 +
2H

t

For any finite solution F , as t → 0, H → −∞, so by maximal principle, H ≤ 0

for all t > 0. i.e., on fundamental solution (which is not finite), H = 0, otherwise

H ≤ 0. So

Fxx ≤ 1

2t
.

Ft = Fxx − F 2
x =

1

2t

H = Fxx − 1

2t
= Ft + F 2

x ≤ 0

dF

dt
= Ft + Fx · dx

dt

≤ −F 2
x + Fx · dx

dt

= −(Fx − 1

2

dx

dt
)2 +

1

4
(
dx

dt
)2

So along any path:

dF

dt
≤ 1

4
(
dx

dt
)2
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Hence ∀x1, x2, t2 > t1

F (x2, t2)− F (x1, t1) ≤ 1

4

∫ t2

t1

(
dx

dt
)2dt

Among all possible path

∫
(
dx

dt
)2dt = min ⇐⇒ d2x

dt2
= 0

i.e., the path is straight line.

dx

dt
=

x2 − x1

t2 − t1

so

F (x2, t2) ≤ F (x1, t1) +
1

4

(x2 − x1)
2

t2 − t1

so u = 1√
4πt

e−x2/4t satisfies

u(x2, t2) ≥ t2
t1

1/2

e−(x2−x1)2/4(t2−t1)u(x1, t1)

Remark. there exists a suitable choice of center of the fundamental solution, such

that the above quality holds.

3 Perelman’s Harnack Inequality

Suppose we are on a gradient shrinking Ricci soliton, as before, we take a fixed vector

bundle and evolve a moving orthonormal frame

F a = F i
a

∂

∂xi



3. PERELMAN’S HARNACK INEQUALITY 51

by

∂

∂t
= gijRijF

k
a

and we have

Rab + DaDbF = ρgab

here

ρ = ρ(t)

so

DaRbc + DaDbDcF = 0

commute (a, b) and contract (a, c), we have

DaR = 2RabDbF

we also have:

(Dt −∆)Rab =2RacbdRcd

(Dt −∆)DaDbF =DaDb(Dt −∆)F + 2RacbdFcd

(Dt −∆)ρgab =(
∂

∂t
ρ)gab

hence

DaDb(Dt −∆)F + 2Racbd(ρgcd) + (
∂ρ

∂t
)gab = 0

i.e.

DaDb[(Dt −∆)F − 2ρF ] = (
∂ρ

∂t
− 2ρ2)gab
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hence

(Dt −∆)F = 2ρF + b(t)

and ∂ρ
∂t

= 2ρ2

so ρ = 1
2(F−t)

, since as t −→ T shrinking soliton will blow-up at every point. or

ρ = 1
2τ

.

This is because ∆[(Dt −∆)F − 2ρF ] = (∂ρ
∂t
− 2ρ2)n on a compact manifold, the

right hand side must be 0.

On the other hand, derive as before, we also have

Da[R + |DF |2 − 1

τ
F ] = DaR + 2DaDbF ·DbF − 1

τ
Fa = 0

i.e.

R + |DF |2 − F

τ
= C(t)

where C(t) is a constant in space. We can pick F , such that this constant C(t) = 0.

Remark. we will see later that the choice of this constant makes difference.

so R + |DF |2 = 1
τ
F

Next we find the value of b(t)

(Dt −∆)R =2|Rc|2

(Dt −∆)|∇F |2 =2DaF ·Da[(Dt −∆)F ]− 2|DaDbF |2

(Dt −∆)(
1

τ
F ) =

1

τ 2
F +

1

τ
(Dt −∆)F

So

0 = 2|Rc|2 − 2|DaDbF |2 + 2DaF ·Da(2ρF )− 1

τ 2
F − 1

τ
(2ρF + b)
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2ρ2 · n− 4ρ∆F + 2 · 2 · ρ|∇F |2 − 1

τ 2
F − 2ρF

τ
− b

τ
= 0

R + ∆F = nρ =
n

2τ

R + |DF |2 =
1

τ
F

so

2ρ2 · n + 4ρ(
1

τ
F − nρ)− 1

τ 2
F − F

τ 2
− b

τ
= 0

− b

τ
+ 2nρ2 +

2

τ 2
F − n

τ 2
− 2F

τ 2
= 0

So

b

τ
=

n

2τ 2
− n

τ 2
= − n

2τ 2

b = − n

2τ

(Dt −∆)F =
1

τ
F − n

2τ

∂

∂t
F =∆F +

1

τ
F − n

2τ

=|DF |2 +
n

2τ
− 1

τ
F +

1

τ
F − n

2τ
= |DF |2

i.e. F moves by its own gradient flow!

We can write in another form

−∂F

∂t
=

∂F

∂τ
= ∆F − |DF |2 + R− n

2τ
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now let u = (4πτ)−
n
2 e−F , easy to verify that u satisfies the following adjoint

forward heat equation:

∂u

∂τ
= ∆u−Ru

i.e., if v satisfies ∂v
∂t

= ∆v, then

∫

M

uv = constant

Let H = 2∆F − |DF |2 + R + 1
τ
F − n

τ
, then on gradient shrinking soliton, H ≡ 0.

Theorem 6 (Perelman’s Harnack) If u is any positive solution to the adjacent heat

equation

∂u

∂τ
= ∆u−Ru

suppose

u = (4πτ)−
n
2 e−F

and

H = 2∆F − |DF |2 + R +
1

τ
F − n

τ

then

∂H

∂τ
+ 2DF ·DH = ∆H − 1

τ
H − 2|Rab + DaDbF − 1

2τ
gab|2

moreover max(τH) is decreasing as τ increase.

Notice that if u is like a δ-function, i.e., F ∼ |x|2
4τ

. or if u is smooth, F =

log 1

(4πτ)
n
2 u

, as τ → 0, F → +∞. So we can not apply maximal principle directly to

H. Nevertheless, we have

∂

∂τ
(τH) + 2DF ·D(τH) = ∆(τH)− 2τ |Rab + DaDbF − 1

2τ
gab|2
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hence we have the above theorem.

If u → δ(ρ, 0), as τ → 0. Since

u = (4πτ)−
n
2 e−F

F ≈ |x|2
4τ

, DaF ≈ xa

2τ
, ∆F ≈ n

2τ

H ≈ n

τ
− |x|2

4τ 2
+ R +

|x|2
4τ 2

− n

τ
→ R

which is finite.

So τH → 0 as τ → 0

by the above theorem, τH should be negative for all τ . so H ≤ 0, but this is

only true for the positive solution whose initial data is heat kernel, remember that

Li-Yau’s harnack is true for any positive solution.

Now let

2 =
∂

∂t
−∆

2∗ =
∂

∂τ
−∆ + R

be its conjugate operator. Since

∫
(2u) · v =

∫
u(2∗v)

to verify the above, consider

d

dt

∫
uv =

∫
(
d

dt
u)v + u(

d

dt
v) + uv(−R)
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so

∫
(
∂

∂t
−∆)u · v =

∫
−u

∂

∂t
v + R · u · v − u ·∆v =

∫
u(

∂

∂τ
−∆ + R)v

Now suppose h is a positive solution to

2h = 0

Let v = τHu

Lemma 15

2∗v = −2τu|Rij + DiDjf − 1

2τ
gij|2 ≤ 0

Proof.

2∗v =(
∂

∂τ
−∆ + R)(τHu)

=u
∂

∂τ
(τH) + (

∂

∂τ
u) · τH − u∆(τH)− τH∆u−∇(τH) · ∇u + RτHu

=u(
∂

∂τ
(τH)−∆(τH)) + τH(

∂

∂τ
u−∆u) + RτHu−∇(τH) · ∇u

=u(−2∇F · ∇(τH)− 2τ |Rij + DiDjf − 1

2τ
gij|2) + τH(−Ru) + RτHu−∇(τH) · ∇u

=− 2τu|Rij + DiDjf − 1

2τ
gij|2

Here we used ∇u = −u · ∇F q.e.d.

We have:

Lemma 16 d
dt

∫
hu = 0 and d

dt

∫
hv ≥ 0
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Proof.

d

dt

∫
hu =

∫
∂h

∂t
· u− h · ∂u

∂τ
−Rhu

=

∫
∆h · u− h ·∆u + Rhu−Rhu = 0

d

dt

∫
hv =

∫
∂h

∂t
· v − h · ∂v

∂τ
−Rhv

≥
∫

∆h · v − h ·∆v + Rhv −Rhv = 0

i.e., as τ decreasing, t increasing.
∫

hu is a constant while
∫

hv is increasing.

q.e.d.

Now as τ → 0, if u → δ− function,
∫

hv → 0. So
∫

hv ≤ 0 for any τ and any h > 0.

So v ≤ 0, for all t < T .

Corollary 8 If u → δp as τ → 0.

H = 2∆F − |DF |2 + R +
1

τ
F − n

τ
= 2

∂F

∂τ
+ |DF |2 −R +

1

τ
F ≤ 0

Along any space-time path x = x(τ).

d

dτ
F =

∂F

∂τ
+ DF · dx

dτ
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d

dτ
(2
√

τF ) =2
√

τ · ∂F

∂τ
+ 2

√
τDF · dx

dτ
+

1√
τ
F

≤√τ(−|DF |2 + R− 1

τ
F + 2DF · dx

dτ
+

1

τ
F )

=
√

τ(−|DF |2 + 2DF · dx

dτ
) + R

√
τ

=
√

τ(−|DF − dx

dτ
|2) +

√
τ(R + (

dx

dτ
)2)

≤√τ(R + (
dx

dτ
)2)

Integrate from a point p and τ = 0 to a point q and τ̄ along a path x = x(τ)

where as τ → 0

x = x(τ) ≈ 2
√

τV + · · · (higher order)

F ≈ |x|2
4τ

= |v|2 and
√

τF → 0

we have

2
√

τ̄F ≤
∫ τ̄

0

√
τ(R + |dx

dτ
|2)dτ = L(q, τ̄)

as defined in Perelman’s paper [5]. Recall

l =
1

2
√

τ
L

Corollary 9

F ≤ l

We also have a nice lower bound on heat kernel:

Corollary 10

u = (4πτ)−
n
2 e−F ≥ (4πτ)−

n
2 e−l
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Remark. If injectivity radius → 0, these estimates are not good, because all heat

kernels are summing up. (?)

Using the above, we can also derive the entropy estimate as a corollary:

W =

∫
τ−

n
2 [τ(R + |DF |2 + F − n)e−F ]dV =

∫
vdV

Notice that

∫
τHe−F dV =

∫
[τ(|DF |2 + R) + F − n]e−F dV

and ∫
∆F · e−F dV =

∫
|DF |2 · e−F dV

2∗v = −2τu|Rij + DiDjF − 1

2τ
gij|2

where

v = τHu = τ
−n
2 e−F (τH)

we get the above identity via integration by parts. Now we state the entropy

estimate as a corollary:

Corollary 11

dW

dτ
=

∫
(
∂v

∂τ
+ Rv)dV ≤

∫
(∆v)dV = 0
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Chapter 6

Ancient Solutions

1 Basic Properties

Suppose we have a solution to the Ricci flow

∂

∂t
gij = −2Rij

which exists on −∞ < t < T ≤ ∞. We call this an ancient solution.

Remark. Not all solution can be ancient solution.

Example. The fundamental solution to the heat equation

ut = uxx

u =
1√
t
e−

x2

4t

can only back to t = 0.

And we have the following theorem

61



62 CHAPTER 6. ANCIENT SOLUTIONS

Theorem 7 If u is an ancient solution for ut = uxx on −∞ < t < T ≤ ∞ and

0 < u ≤ c, the u is a constant

Proof.

(log(u))xx = (
ux

u
)x =

uuxx − u2
x

u2

q.e.d.

Now let us assume the metric has weakly positive curvature operator

Rijklϕijϕkl ≥ 0

for all ϕij 6= 0,ϕij ∈
∧2

Remark.

1. This condition is preserved by Ricci Flow

2. In dim 3, positive curvature operator is equivalent to positive sectional curvature

3. This condition implies Harnack estimate (or in the Kähler case with positive

bisectional curvature) we have

∂

∂t
R +

R

t
≥ 2R−1

ij DiRDjR (t > 0)

If we have a solution on α < t < T , the above inequality changes to

∂

∂t
R +

R

t− α
≥ 2R−1

ij DiRDjR

Now if we have an ancient solution, let α → −∞, t− α → ∞, 1
t−α

→ 0, so we

have

∂

∂t
R ≥ 2R−1

ij DiRDjR
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hence R increases point-wise. So the current bound on R on a set implies bound

on any early time on the same set.

Theorem 8 If we have an ancient solution with bounded curvature and has nonneg-

ative curvature operator, if R attains its space-time maximum at an interior point

(p̄, t̄), then the solution is a steady soliton

Rij = DiDjf

Proof. strong maximum principle applies to Harnack estimate. q.e.d.

Next we define two important quantities for complete ancient solutions with

bounded curvature and has nonnegative curvature operator.

Definition. Let us pick any point as origin, let s denote the distance to origin 0, let

Bs(0) denote the ball of radius s around the origin, and let V ol(Bs(0)) be its volume.

Since the manifold has weakly positive Ricci curvature, the standard Bishop volume

comparison theorem tells us that

V ol(Bs(0))

sn

is monotone decreasing as s increase. We define the asymptotic Volume ratio

ν = lim
s→∞

V ol(Bs(0))

sn

Definition. Let 0, s as above, let R be the scalar curvature, we define the asymptotic

scalar curvature ratio

A = lim sup
s→∞

Rs2

Remark. The definitions of ν and A does not depend on the choice of the origin. For
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more details of those two quantities, the reader can check Hamilton’s survey paper

[4]. We will the proof for now.

Theorem 9 A is independent of time t under the Ricci flow. Moreover, if we assume

|Rm| → 0 as s → ∞ (this is a condition preserved by the Ricci flow), then ν is also

a constant under the Ricci flow.

Proof. cf. [4]. q.e.d.

Theorem 10 For dimension 3, if we have an ancient solution with |Rm| ≤ c and

Rm ≥ 0, then ν = 0 and A = ∞.

Proof. ”blow-back” in time (t → −∞). We will divide the proof into two cases:

I) lim sup
t→−∞

|t| sup
Mt

R = Ω < ∞

II) lim sup
t→−∞

|t| sup
Mt

R = ∞

(for more detail, check note P63-66.) q.e.d.

Before we prove the above theorem, we state the following theorem (cf. [4] Thm.

24.7)

Theorem 11 Suppose we have a complete k-non-collapsed solution on some scale to

the Ricci flow on a three-manifold on a maximal time interval 0 ≤ t < T < ∞ with

bounded curvature, and

(T − t)|Rm| ≤ Ω < ∞

then either

a) M3 is compact and M3 → S3/Γ as t → T

or
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b) M3 (which is noncompact) has a sequence (pj, tj) where

(T − t)|Rm(pj, tj)| ≥ θ > 0

for some θ and blow-up limit around (pj, tj) is S2 × R1/Γ.

Proof. check note P67-72. q.e.d.

Suppose we have a complete three-manifold, which is an ancient solution to the

Ricci flow with bounded curvature on −∞ < t < T . (by the pinching estimate, we

know that Rm ≥ 0.) Let us do a blow back for t → −∞. We will have the following

two cases:

I) |Rm||t| ≤ Ω < ∞, as t → −∞

or

II) lim sup
t→−∞

|Rm||t| = ∞

If we take limit as t → −∞ around a sequence where scalar curvature R is

maximum. We have a solution satisfies either

I) −∞ < t < Ω, |Rm| ≤ Ω
Ω−t

and R(0, 0) = 1

or

II) −∞ < t < ∞, |Rm| ≤ 1 and R(0, 0) = 1

In case I, we can do another limit as t → Ω, this is still a backward limit of original

solution and t →∞ (forward limit of a backward limit is still a backward limit) and

get type I limit.

Apply previous result Thm. 11 we have either
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i) converges to S3/Γ, and the ancient solution is always S3/Γ.

or

ii) another limit converges to S2×R1/Γ, and the ancient solution is always S2×R1/Γ.

Question. Is it possible that the following ancient solution (Fig. 6.1) exist? If it

exists, is it Type II?

t = 0

t = - ∞

Figure 6.1: ancient solution

In case (ii), there exists backward limit rescaled around R(pj, tj) which attains

maximum at time tj, and the limit is S2 × R1/Γ (Fig. 6.2).

R
2 ×S

Figure 6.2: S2 × R

So ν = 0 and if it is k-non-collapsed, then A = ∞. Because if Rs2 ≤ A < ∞, then

inj radius ≥ k · s

2
√

A
= δs

and (see Fig. 6.3)

V ol(B 3s
2
(0)) ≥ V ol(B s

2
(p)) ≥ εsn
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hence
V ol(B 3s

2
(0))

(3
2
s)n

≥ η > 0

this is a contradiction.

In the above, we use the k-non-collapsed condition plus ν = 0 and get A = ∞.

In case (II), since R attains its maximum at (0, 0), so M is a steady soliton with

Rij = DiDjf ≥ 0

By a former theorem of Hamilton (cf. eternal solution), we have

A = ∞

(otherwise the backward limit on Mm−{0} gives a complete flat metric on Rm−{0}
which we know does not exist.)

P
2

s

s

2

A4

s
R ≤

Figure 6.3: asymptotic volume ratio
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Since A = ∞, we can do a blow-out limit as p → ∞ which splits a flat factor

N2 × R1, where N2 is also an ancient solution, and Kk-non-collapsed, so it must be

S2. Now out limit is S2 × R1/Γ and hence ν = 0.

So in case II, we also have A = ∞ and ν = 0.

Hence in dimension 3, we prove that A = ∞ and ν = 0 for Kk-non-collapsed (all

scales) complete ancient solutions.

2 Local Estimates for Ancient Solutions

In this section, we shall analyze complete ancient solution to the Ricci flow, which is k-

non-collapsed for some k and all scales with bounded curvature on −∞ < t ≤ T < ∞.

We also assume the following conditions:

1. Nonnegative curvature operator Rm ≥ 0

2. ν = 0

Remark. In dimension 3, both conditions are satisfied automatically, for higher

dimension, Perelman [5] proves the second condition is true.

Theorem 12 (cf. [5] 11.6(a)) For all w > 0, ∃C = C(w), such that if we have a

solution satisfies all conditions described above, and for some point P and r > 0,

V ol(B(P, r, t)) ≥ wrn ∀t ∈ [t0, T ]

then

R(x, t) ≤ Cr−2 +
C

t− t0
∀(x, t) ∈ B(P,

r

2
, t)

Remark.
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1) Here C is a universal constant, which does not depend on an particular solution

of the Ricci flow

2) there is a small difference between this argument and Perelman’s, which is a local

estimate. (?)

3 Analysis of Ancient Solutions

(Q: Did we use ν = c?

Suppose we have a solution to the Ricci flow

∂

∂t
gij = −2Rij

satisfies the following conditions:

(1) complete with bounded curvature.

(2) (ancient) the solution exists on −∞ < t ≤ T < ∞

(3) Curvature operator Rm ≥ 0

(4) In the class where asymptotic volume ratio

ν = lim
s→∞

V ol(Bs(0))

sn
= 0

Remark.

(a) condition (3) is always true in dimension 3 by the pinching estimate.

(b) condition (4) is always true for dimension 3 (if (1)-(3) is true).
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(c) Perelman proves that under k-non-collapse condition, for some k and all scales,

(4) is true (if(1)-(3) is true)

(d) Hamilton conjectured that (4) is true for all n.

Exercise. If Rs2 < ∞, prove by Bishop volume comparison theorem that the blow

up limit will be cone-like.

Lemma 17 For all ε, ∃A = A(ε, k), such that for any solution satisfies condition

(1)-(4). Inside any Ball B(P, r) for some point P and radius r, if

sup
Q∈B(P,r)

R(Q)[r − d(P,Q)]2 ≥ A

then

V ol(B(P, r)) ≤ εrn

Proof. Suppose it is not true. So there exists a ε > 0, for any Aj →∞, we can find

{Mj, gj, Pj, rj}

such that

sup
Q∈B(Pj ,rj)

Rj(Q)[rj − d(Pj, Q)]2 ≥ Aj

but

V ol(B(Pj, rj)) > εrn
j

Suppose the sup attains at Qj. i.e.,

Rj(Qj)[rj − d(Pj, Qj)]
2 = Aj
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and

Rj(Q)[rj − d(Pj, Q)]2 ≤ Aj

for all other Q. Rescaling such that R̃j(Qj) = 1. Let

Rj(Qj) =
1

ρ2
j

,

so

ρj =
1√

Rj(Qj)

(after rescaling, ρ̃j = 1)

Take Qj as the new origins, and take the limit of rescaled solution. Since ∀x,

r − d(P, x) ≥ (r − d(P, Q)− d(Q, x))

Let d(x,Qj) = βρj

r − d(Pj, Qj) =

√
Aj

Rj(Qj)
=

√
Aj · ρj

so

r − d(P, Q)− d(Q, x) =
√

Ajρj − βρj = (
√

Aj − β)ρj

Hence

Rj(x)

Rj(Qj)
≤ (rj − d(Pj, Qj))

2

(rj − d(Pj, x))2
=

Ajρ
2
j

(
√

Aj − β)2ρ2
j

=
1

(1− β√
Aj

)2
→ 1

as Aj →∞ for fixed β. (why fixed? β is fixed means x is in finite distance from Qj.)

Since it is k-non-collapsed, so the limit exist and R(0) = 1, R ≤ 1 at time T . (?)

Because of the Harnack inequality, this is also true for all t ≤ T . Hence the limit

is still a solution to the Ricci flow with condition (1)-(4). i.e., ν = 0 on the limit.
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For given ε, there exists radium λ0, such that, for all λ ≥ λ0, then

vol(B(0, λ)) ≤ ελn/2n+1

because

B(Q, 2r) ⊇ B(p, r)

for r large enough. so

Claim 1

volj(B(Pj, rj)) ≤ vol(B(Qj, 2rj)) ≤ ελn/2n

Since volj(B(Qj, 2rj)) → vol(B∞(Q∞, 2r)), now take r̃j =
rj

ρj
→ ∞. So if j is

large enough, then

rj

ρj

> λ0

so

volj(Bj(Qj, 2rj))

(2rj)n
=

ṽolj(B̃j(Qj,
2rj

ρj
))

(2rj/ρj)n

≤ ṽolj(B̃j(Qj, λ0))

(λ0)n
→ vol∞(B∞(Q∞, λ0))

(λ0)n
≤ ε

2n+1

If j is large enough, then before convergence, we also have

volj(Bj(Qj, 2rj))

(2rj)n
≤ ε

2n

On the other hand,

volj(Bj(Qj, 2rj))

(2rj)n
≥ volj(Bj(Pj, 2rj))

(2rj)n
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so volj(Bj(Pj, rj)) ≤ εrn
j .

This is a contradiction, hence our lemma is true. q.e.d.

Theorem 13 For all k > 0, all λ > 0. ∃B = B(k, λ) < ∞, such that for any

solution to the Ricci flow satisfies condition (1)-(3), which is k-non-collapsed on all

scales. If there exists a ball B(x, σ) around some x and some radius σ. we have

R ≤ 1
σ2 in B(x, σ) then R ≤ B

σ2 in B(x, λσ)

Remark. In fact, 1 < λ < ∞. If λ ≤ 1, we can take B = 1.

Proof. Because of the k-non-collapse,

vol(B(x, σ)) ≤ kσn

Since

B(x, σ) ⊆ B(x, (λ + 1)σ)

choose

ε <
k

(λ + 1)n

by the previous lemma: ∃A = A(ε, k). Since for Ball B(x, (λ + 1)σ),

vol(B(x, (λ + 1)σ)) ≤ kσn > ε((λ + 1)σ)n

so

R(Q)[(λ + 1)σ − d(x, Q)]2 ≤ A

for any Q ∈ B(x, (λ + 1)σ), so if Q ∈ B(x, λσ), then d(x,Q) ≤ λσ. so

(λ + 1)σ − d(x, σ) ≥ σ



74 CHAPTER 6. ANCIENT SOLUTIONS

so

R(Q) · σ2 ≤ R(Q)[(λ + 1)σ − d(x, σ)]2 ≤ A

hence

R(Q) ≤ A

σ2

we only need to take B = A. q.e.d.

Theorem 14 For all k > 0, ∃a = a(k) > 0, such that if we have a solution to the

Ricci flow satisfies conditions (1)-(3) and is K-non-collapse on all scales. Then for

any point x, let r = r(x) be the largest radius r such that R ≤ 1
r2 in B(x, r). We also

have

R(x) ≥ a

r2

Remark. If we let σ =
√

a/
√

R(x), then r ≥ √
a/

√
R(x). Since R ≤ 1

r2 in Br(x)

and r ≥ √
a/

√
R(x), we have 1

r2 ≤ 1
a
R(x), hence R(Q) ≤ 1

a
R(x), ∀Q ∈ B(x,

√
a

R(x)
,

so we have the following corollary:

Corollary 12 ∀k > 0, ∃0 < C = C(k) < ∞, such that ∀Q ∈ B(x, c
R(x)

), we have

R(Q) ≤ CR(x).

Proof. Since r is the largest radius, such that R ≤ 1
r2 in B(x, r), so there exists a

point Z in B(x, r) such that R(Z) = 1
r2 , otherwise r could be larger.

Now by the last theorem, take λ = 4, there exists a constant A = A(k, 4) < ∞,

such that R ≤ A
r2 in B(x, 4r). Notice because d(x, Z) ≤ r, so B(Z, 3r) ⊂ B(x, 4r).

The aboves are true at time T , now we need to think a little bit backward. Since we

have positive curvature, keep in mind that the distance is shrinking.

We can find δ > 0 small enough, such that for T − δr2 ≤ t ≤ T , B(Z, 2r, t) ⊆
B(Z, 2r, T ). On the other hand, we can also find δ > 0 small enough, such that if

T − δr2 ≤ t ≤ T , then d(Z, x, t) ≤ 2r.
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In fact, we know the first one is always true, so we only need to choose δ satisfies

the second one.

Now we use W.X.Shi′s derivative estimate, which gives bound on |DR|, |D2R|
and |DtR| in B(Z, 2r, T − 1

2
δr2 ≤ t ≤ T ), so we have

R(Z, t) ≥ 1

2r2
, ∀T − δ

2
r2 ≤ t ≤ T

(In fact, |DR| ≤ C1/r
3, |D2R|,|DtR| ≤ C2

r4 ).

Let’s pick a geodesic from X to Z at time (T − 1
2
δr2), this is the largest geodesic

between X and Z for all t ∈ [T − δ
2
r2, T ]. At time t = T , the length of this geodesic

is less than r.

We can parametrize it by the arc length s at time T . So

Y (s) : Y (0) = Z, Y (s̃) = X.

|dY
dS
|t=T = 1, 0 ≤ s ≤ s̄ ≤ d(z, x, T ) ≤ r.

Now we take the path in space-time:

[Y (s), T − 1

2
δr2 +

s

s̄
(
1

2
δr2)]

We have |dY
dS
|t ≤ 2 for all t ∈ [T − 1

2
δr2, T ].

This is because we have bounded curvature, so length does not change too much,

we can make δ smaller if needed. Since the curvature operator is positive, we have

Harnack inequality:

∂R

∂t
≥ 2R−1

c (DR, DR) ≥ 2

R
|DR|2 ≥ 2r2

A
|DR|2
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(Rc ≥ 0, Rc ≤ Rg, R−1
c ≥ 1

R
g−1 and R ≤ A/r2)

This is the true for any (p, t) in B(x, 4r)× [T − 1
2
δr2, T ]. Now along the space-time

path:

dR

dt
=

∂R

∂t
+ DR(Y )

dY

ds
· ds

dt

≥∂r2

A
|DR(Y )|2 − |DR(Y )| · 2 · 2r

δr2

≥− 1

r4
· A

2
· 1

δ2

Here we use

t = T − 1

2
δr2 +

s

s̄
(
1

2
δr2)

dt

ds
=

1

2
δr2/s̄ =

δr2

2s̄

ds

dt
=

ss̄

δr2
≤ 2r

δr2

Or we can write

dR

dt
≥ 2

R
|DR|2 − |DR| · 2 · 2

δr
≥ − 2

δ2
· 1

r2
R

i.e. d
dt

lnR ≥ − 2
δ2

1
r2 .

lnR(x, t)− lnR(Z, T − 1

2
δr2) ≥ − 2

δ2

1

r2
(
1

2
δr2) = −1

δ

So R(x, T ) ≥ R(Z, T − 1
2
δr2) · e− 1

δ ≥ 1
2r2 e

− 1
δ .

Take a = 1
2
e−

1
δ , this finishes the proof of the theorem.

q.e.d.
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Remark. Without the assumption of K-non-collapse, this theorem is not true. For

example, look at cigar.

Suppose it is true, since R(x) = e−s (assume M = 1),
√

R(x) = e−s/2, so r =

√
aR(x) =

√
ae−s.

Now at s− r = s−
√

a

e−s/2 .

R(Y ) = e−[s−r] = e
−[s−

√
a

e−s/2
]
= e−s · e

√
aes/2

= R(x)e
√

aes/2

If there exists such a, then R(Y )
R(x)

→∞ as s →∞. One reason is that DR = ∂R
∂s

=

e−s, so |DR|2
R3 = es →∞ as s →∞
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